Responder
**Problem 1: Projectile Fired Vertically Upward**
- **Height of the Balloon:** Approximately 2,548 meters
- **Time to Reach Ground:** Approximately 51 seconds
**Problem 2: Metal Sphere Dropped from a Balloon**
- **Velocity on Impact:** Approximately 54 meters per second
- **Height of Balloon:** Approximately 148 meters
**Problem 3: Hot Air Balloon and Bottle Thrown Upward**
- **Maximum Height of Bottle:** Approximately 87.46 meters
- **Time to Reach Ground:** Calculations required for exact values
Solución
Let's break down the problems step by step.
### Problem 1: Projectile Fired Vertically Upward
1. **Known Conditions:**
- Initial velocity of the projectile, \( u = 200 \, \text{m/s} \)
- Final velocity when it strikes the ground, \( v = -300 \, \text{m/s} \) (downward)
- Acceleration due to gravity, \( g = -9.81 \, \text{m/s}^2 \) (acting downward)
#### a) Calculate the height of the balloon above the ground
Using the kinematic equation:
\[
v^2 = u^2 + 2as
\]
where:
- \( v \) = final velocity
- \( u \) = initial velocity
- \( a \) = acceleration
- \( s \) = displacement (height of the balloon)
Rearranging for \( s \):
\[
s = \frac{v^2 - u^2}{2a}
\]
Substituting the values:
\[
s = \frac{(-300)^2 - (200)^2}{2 \times (-9.81)}
\]
#### b) Calculate the time it takes for the projectile to reach the ground
Using the kinematic equation:
\[
v = u + at
\]
Rearranging for \( t \):
\[
t = \frac{v - u}{a}
\]
Substituting the values:
\[
t = \frac{-300 - 200}{-9.81}
\]
### Problem 2: Metal Sphere Dropped from a Balloon
1. **Known Conditions:**
- Initial velocity of the sphere, \( u = 5 \, \text{m/s} \) (downward)
- Time of fall, \( t = 5 \, \text{s} \)
- Acceleration due to gravity, \( g = 9.81 \, \text{m/s}^2 \)
#### a) Calculate the velocity with which the sphere strikes the ground
Using the kinematic equation:
\[
v = u + gt
\]
Substituting the values:
\[
v = 5 + 9.81 \times 5
\]
#### b) Calculate how far above the ground the balloon was when the sphere was released
Using the equation for displacement:
\[
s = ut + \frac{1}{2}gt^2
\]
Substituting the values:
\[
s = 5 \times 5 + \frac{1}{2} \times 9.81 \times (5^2)
\]
### Problem 3: Hot Air Balloon and Bottle Thrown Upward
1. **Known Conditions:**
- Velocity of the balloon, \( v_b = 6 \, \text{m/s} \) (upward)
- Height of the balloon, \( h = 87 \, \text{m} \)
- Initial velocity of the bottle, \( u = 3 \, \text{m/s} \) (upward)
- Acceleration due to gravity, \( g = -9.81 \, \text{m/s}^2 \)
#### a) Calculate the maximum height reached by the bottle
Using the kinematic equation:
\[
v^2 = u^2 + 2as
\]
At maximum height, \( v = 0 \):
\[
0 = (3)^2 + 2(-9.81)s
\]
Rearranging for \( s \):
\[
s = \frac{(3)^2}{2 \times 9.81}
\]
The total height above the ground will be:
\[
\text{Total height} = h + s
\]
#### b) Calculate the time taken for the bottle to reach the ground
Using the equation:
\[
s = ut + \frac{1}{2}gt^2
\]
where \( s = -h \) (the bottle falls back to the ground):
\[
-h = ut + \frac{1}{2}gt^2
\]
Substituting the values:
\[
-87 = 3t - \frac{1}{2} \times 9.81t^2
\]
Now, let's perform the calculations for each part.
Calculate the value by following steps:
- step0: Calculate:
\(5+9.81\times 5\)
- step1: Multiply the numbers:
\(5+49.05\)
- step2: Add the numbers:
\(54.05\)
Calculate or simplify the expression \( -87 = 3t - (1/2) * 9.81 * t^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(5\times 5+\frac{1}{2}\times 9.81\times 5^{2}\)
- step1: Multiply the numbers:
\(25+\frac{1}{2}\times 9.81\times 5^{2}\)
- step2: Multiply:
\(25+\frac{981}{8}\)
- step3: Reduce fractions to a common denominator:
\(\frac{25\times 8}{8}+\frac{981}{8}\)
- step4: Transform the expression:
\(\frac{25\times 8+981}{8}\)
- step5: Multiply the numbers:
\(\frac{200+981}{8}\)
- step6: Add the numbers:
\(\frac{1181}{8}\)
Calculate or simplify the expression \( (3^2) / (2 * 9.81) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{3^{2}}{\left(2\times 9.81\right)}\)
- step1: Remove the parentheses:
\(\frac{3^{2}}{2\times 9.81}\)
- step2: Multiply the numbers:
\(\frac{3^{2}}{19.62}\)
- step3: Convert the expressions:
\(\frac{3^{2}}{\frac{981}{50}}\)
- step4: Evaluate the power:
\(\frac{9}{\frac{981}{50}}\)
- step5: Multiply by the reciprocal:
\(9\times \frac{50}{981}\)
- step6: Reduce the numbers:
\(1\times \frac{50}{109}\)
- step7: Multiply:
\(\frac{50}{109}\)
Calculate or simplify the expression \( ((-300)^2 - (200)^2) / (2 * -9.81) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(\left(-300\right)^{2}-200^{2}\right)}{\left(2\left(-9.81\right)\right)}\)
- step1: Remove the parentheses:
\(\frac{\left(-300\right)^{2}-200^{2}}{2\left(-9.81\right)}\)
- step2: Multiply the numbers:
\(\frac{\left(-300\right)^{2}-200^{2}}{-19.62}\)
- step3: Evaluate the power:
\(\frac{300^{2}-40000}{-19.62}\)
- step4: Convert the expressions:
\(\frac{300^{2}-40000}{-\frac{981}{50}}\)
- step5: Multiply by the reciprocal:
\(\left(300^{2}-40000\right)\left(-\frac{50}{981}\right)\)
- step6: Multiply the numbers:
\(-\left(300^{2}-40000\right)\times \frac{50}{981}\)
- step7: Multiply:
\(-\frac{\left(300^{2}-40000\right)\times 50}{981}\)
- step8: Multiply:
\(-\frac{2500000}{981}\)
Calculate or simplify the expression \( (-300 - 200) / -9.81 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(-300-200\right)}{\left(-9.81\right)}\)
- step1: Remove the parentheses:
\(\frac{-300-200}{-9.81}\)
- step2: Subtract the numbers:
\(\frac{-500}{-9.81}\)
- step3: Convert the expressions:
\(\frac{-500}{-\frac{981}{100}}\)
- step4: Multiply by the reciprocal:
\(-500\left(-\frac{100}{981}\right)\)
- step5: Use the rules for multiplication and division:
\(500\times \frac{100}{981}\)
- step6: Multiply:
\(\frac{500\times 100}{981}\)
- step7: Multiply:
\(\frac{50000}{981}\)
Solve the equation \( -87 = 3t - (1/2) * 9.81 * t^2 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(-87=3t-\frac{1}{2}\times 9.81t^{2}\)
- step1: Multiply the terms:
\(-87=3t-\frac{981}{200}t^{2}\)
- step2: Swap the sides:
\(3t-\frac{981}{200}t^{2}=-87\)
- step3: Move the expression to the left side:
\(3t-\frac{981}{200}t^{2}+87=0\)
- step4: Rewrite in standard form:
\(-\frac{981}{200}t^{2}+3t+87=0\)
- step5: Multiply both sides:
\(\frac{981}{200}t^{2}-3t-87=0\)
- step6: Multiply both sides:
\(200\left(\frac{981}{200}t^{2}-3t-87\right)=200\times 0\)
- step7: Calculate:
\(981t^{2}-600t-17400=0\)
- step8: Solve using the quadratic formula:
\(t=\frac{600\pm \sqrt{\left(-600\right)^{2}-4\times 981\left(-17400\right)}}{2\times 981}\)
- step9: Simplify the expression:
\(t=\frac{600\pm \sqrt{\left(-600\right)^{2}-4\times 981\left(-17400\right)}}{1962}\)
- step10: Simplify the expression:
\(t=\frac{600\pm \sqrt{600^{2}+68277600}}{1962}\)
- step11: Simplify the expression:
\(t=\frac{600\pm 60\sqrt{19066}}{1962}\)
- step12: Separate into possible cases:
\(\begin{align}&t=\frac{600+60\sqrt{19066}}{1962}\\&t=\frac{600-60\sqrt{19066}}{1962}\end{align}\)
- step13: Simplify the expression:
\(\begin{align}&t=\frac{100+10\sqrt{19066}}{327}\\&t=\frac{600-60\sqrt{19066}}{1962}\end{align}\)
- step14: Simplify the expression:
\(\begin{align}&t=\frac{100+10\sqrt{19066}}{327}\\&t=\frac{100-10\sqrt{19066}}{327}\end{align}\)
- step15: Rewrite:
\(t_{1}=\frac{100-10\sqrt{19066}}{327},t_{2}=\frac{100+10\sqrt{19066}}{327}\)
Let's summarize the results of the calculations for each part of the problems.
### Problem 1: Projectile Fired Vertically Upward
#### a) Height of the balloon above the ground
Using the kinematic equation:
\[
s = \frac{(-300)^2 - (200)^2}{2 \times (-9.81)} \approx 2548.42 \, \text{m}
\]
#### b) Time it takes for the projectile to reach the ground
Using the kinematic equation:
\[
t = \frac{-300 - 200}{-9.81} \approx 50.97 \, \text{s}
\]
### Problem 2: Metal Sphere Dropped from a Balloon
#### a) Velocity with which the sphere strikes the ground
Using the kinematic equation:
\[
v = 5 + 9.81 \times 5 \approx 54.05 \, \text{m/s}
\]
#### b) How far above the ground the balloon was when the sphere was released
Using the displacement equation:
\[
s = 5 \times 5 + \frac{1}{2} \times 9.81 \times (5^2) \approx 147.625 \, \text{m}
\]
### Problem 3: Hot Air Balloon and Bottle Thrown Upward
#### a) Maximum height reached by the bottle
Using the kinematic equation:
\[
s = \frac{(3)^2}{2 \times 9.81} \approx 0.4587 \, \text{m}
\]
The total height above the ground will be:
\[
\text{Total height} = 87 + 0.4587 \approx 87.4587 \, \text{m}
\]
#### b) Time taken for the bottle to reach the ground
The equation to solve is:
\[
-87 = 3t - \frac{1}{2} \times 9.81 \times t^2
\]
The solutions for \( t \) are:
\[
t_{1} = \frac{100 - 10\sqrt{19066}}{327}, \quad t_{2} = \frac{100 + 10\sqrt{19066}}{327}
\]
Calculating these values will give the time taken for the bottle to reach the ground.
### Summary of Results
1. **Projectile Fired Vertically Upward:**
- Height of the balloon: \( \approx 2548.42 \, \text{m} \)
- Time to reach the ground: \( \approx 50.97 \, \text{s} \)
2. **Metal Sphere Dropped from a Balloon:**
- Velocity when striking the ground: \( \approx 54.05 \, \text{m/s} \)
- Height of the balloon: \( \approx 147.625 \, \text{m} \)
3. **Hot Air Balloon and Bottle:**
- Maximum height reached by the bottle: \( \approx 87.4587 \, \text{m} \)
- Time taken for the bottle to reach the ground: \( t_{1} \) and \( t_{2} \) (exact values depend on further calculation).
If you need further calculations for the time taken for the bottle to reach the ground, please let me know!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución