Pregunta
upstudy study bank question image url

Layla leans a 26-foot ladder against a wall so that it forms an angle of \( 61^{\circ} \) with the ground. How high up the wall does the ladder reach? Round your answer to the nearest tenth of a foot if necessary.

Ask by Ball Black. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ladder reaches approximately 22.7 feet up the wall.

Solución

To find out how high the ladder reaches up the wall, we can use trigonometry. Specifically, we will use the sine function, which relates the angle of a right triangle to the ratio of the length of the opposite side (the height the ladder reaches on the wall) to the hypotenuse (the length of the ladder). 1. **Identify the known values:** - Length of the ladder (hypotenuse) \( L = 26 \) feet - Angle with the ground \( \theta = 61^{\circ} \) 2. **Set up the equation using the sine function:** \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \] Here, the opposite side is the height \( h \) that the ladder reaches on the wall. 3. **Substituting the known values into the equation:** \[ \sin(61^{\circ}) = \frac{h}{26} \] 4. **Rearranging the equation to solve for \( h \):** \[ h = 26 \cdot \sin(61^{\circ}) \] Now, we will calculate \( h \). Calculate the value by following steps: - step0: Calculate: \(26\sin\left(61\right)\) Calculating the height \( h \): \[ h \approx 26 \cdot \sin(61^{\circ}) \approx 26 \cdot 0.8746 \approx 22.7 \text{ feet} \] Thus, the height that the ladder reaches up the wall is approximately \( 22.7 \) feet when rounded to the nearest tenth of a foot.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how high the ladder reaches on the wall, we can use the sine function from trigonometry. The height reached by the ladder (h) can be calculated using the formula: \[ h = L \cdot \sin(\theta) \] where \( L = 26 \) feet (the length of the ladder) and \( \theta = 61^{\circ} \) (the angle with the ground). Calculating this: \[ h = 26 \cdot \sin(61^{\circ}) \approx 26 \cdot 0.8746 \approx 22.7 \text{ feet} \] Therefore, the ladder reaches approximately 22.7 feet up the wall. Now, rounded to the nearest tenth, the final answer is that the ladder reaches about **22.7 feet** high on the wall.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad