Pregunta
upstudy study bank question image url

1) Factoring Quadratics With Undefined C Fill in the blanks by finding the largest and smallest integers that will make the quadratic expression factorable. Explain your reasoning and show your working

Ask by Wade Macdonald. in Singapore
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To make the quadratic expression \(x^2 + bx + c\) factorable with integer coefficients, \(c\) must be such that it can be expressed as the product of two integers that add up to \(b\). The smallest integer for \(c\) is typically negative, while the largest is positive and depends on the factor pairs of \(ac\).

Solución

To determine the largest and smallest integers that will make a quadratic expression factorable, we need to consider a general quadratic expression of the form: \[ ax^2 + bx + c \] In this case, we are given that \(c\) is undefined, meaning we need to find conditions on \(c\) such that the quadratic can be factored into two binomials. ### Step 1: Understanding Factorability A quadratic expression \(ax^2 + bx + c\) is factorable over the integers if there exist two integers \(m\) and \(n\) such that: \[ m + n = b \quad \text{and} \quad m \cdot n = ac \] ### Step 2: Setting Up the Problem Since \(c\) is undefined, we can express \(c\) in terms of \(m\) and \(n\): \[ c = \frac{m \cdot n}{a} \] ### Step 3: Finding Integer Values To find the largest and smallest integers for \(c\), we need to consider the following: 1. **Factor pairs of \(ac\)**: The product \(m \cdot n\) must equal \(ac\). Therefore, we need to find pairs of integers that multiply to give \(ac\). 2. **Sum of the pairs**: The sum of these pairs must equal \(b\). ### Step 4: Example Calculation Let's assume \(a = 1\) for simplicity, so we have: \[ x^2 + bx + c \] We need to find integers \(m\) and \(n\) such that: \[ m + n = b \quad \text{and} \quad m \cdot n = c \] ### Step 5: Finding Limits for \(c\) To find the largest and smallest integers for \(c\): - **Smallest \(c\)**: This occurs when \(m\) and \(n\) are both negative or both positive and as close to zero as possible. For example, if \(b = 0\), then \(m = 1\) and \(n = -1\) gives \(c = -1\). - **Largest \(c\)**: This occurs when \(m\) and \(n\) are both large positive integers. For example, if \(b = 10\), then \(m = 5\) and \(n = 5\) gives \(c = 25\). ### Conclusion To summarize, the largest and smallest integers for \(c\) depend on the values of \(b\) and the factor pairs of \(ac\). - The smallest integer \(c\) can be is typically negative, depending on the values of \(m\) and \(n\). - The largest integer \(c\) can be is positive and can be determined by the maximum product of the factor pairs. If you have specific values for \(a\) and \(b\), I can provide a more precise calculation for the largest and smallest integers for \(c\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To factor a quadratic expression of the form \( ax^2 + bx + c \) where \( c \) is undefined, we can set \( c \) to some integer values. The expression is factorable if the discriminant \( b^2 - 4ac \) is a perfect square. Let's say \( a = 1 \) and \( b = k \) (where \( k \) is an integer). We need to find values for \( c \) such that \( k^2 - 4c \) is a perfect square \( m^2 \). 1. **Largest Integer**: If we let \( k = 0 \), then the equation becomes \( -4c = m^2 \). As \( m^2 \) can only be non-negative, we find: \( c \) must be less than or equal to 0. The largest integer we can take here is \( c = 0 \). 2. **Smallest Integer**: If we set \( c \) to a high negative value, for instance, \( c = -1 \), then our equation for \( k = 0 \) turns into \( -4(-1) = 4 \), which is \( m^2 \). But if we delve further, as \( c \) becomes more negative, the perfect square condition still holds. Thus, we conclude that c can potentially reach \( c = -\infty \) but we conventionally stop at integers, so for finite comparison, the smallest could be \( c = -1 \). Therefore, the largest value of \( c \) is \( 0 \) and the smallest could be \( -1 \). This showcases how c influences the factorability of quadratics! Keep those integers in check!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad