168.1) \( \frac{x+3}{x^{2}+x-6} \) 3) \( \frac{x^{2}-4 x+3}{x-1} \) 5) \( \frac{x^{2}-4 x+3}{5 x-5} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To tackle these expressions, let’s polish our factoring skills! For \( \frac{x+3}{x^{2}+x-6} \), notice that \( x^2 + x - 6 \) can be factored into \( (x+3)(x-2) \). So, upon simplification, you get \( \frac{1}{x-2} \) when \( x \neq -3 \) and \( x \neq 2 \). Next up, look at \( \frac{x^{2}-4 x+3}{x-1} \). Here, \( x^2 - 4x + 3 \) factors nicely into \( (x-3)(x-1) \), which leads to a simplified form of \( x-3 \) (as long as \( x \neq 1 \) to avoid division by zero). And for \( \frac{x^{2}-4 x+3}{5 x-5} \), we see the same quadratic, yielding \( \frac{(x-3)(x-1)}{5(x-1)} \), which simplifies down to \( \frac{x-3}{5} \) while keeping \( x \neq 1 \) in mind! Happy factoring!
