Pregunta
upstudy study bank question image url

5. \( [-/ 1 \) Points \( ] \) DETAILS MY NOTES SPRECALC8 4.6.025. This exercise uses the radioactive decay model. If 250 mg of a radloactive element decays to 230 mg in 12 hours, find the half-life (in hr) of the element. (Round your answer to the nearest whole number. \( \square \mathrm{hr} \)

Ask by Matthews Chavez. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The half-life of the element is approximately 100 hours.

Solución

We start with the radioactive decay model:   A = A₀(½)^(t/h) where:   A = amount after time t,   A₀ = initial amount,   h = half-life. Given:   A₀ = 250 mg,   A = 230 mg,   t = 12 hours. Substitute the given values into the model:   230 = 250(½)^(12/h) Step 1: Divide both sides by 250:   230/250 = (½)^(12/h)   0.92 = (½)^(12/h) Step 2: Take the natural logarithm on both sides:   ln(0.92) = ln[(½)^(12/h)]   ln(0.92) = (12/h) ln(½) Step 3: Solve for h:   12/h = ln(0.92) / ln(½)   h = 12 * [ln(½) / ln(0.92)] Recall ln(½) is negative:   ln(½) = –0.693147   ln(0.92) ≈ –0.0833816 Now substitute:   h = 12 * (–0.693147 / –0.0833816)   h = 12 * (0.693147 / 0.0833816)   h ≈ 12 * 8.308   h ≈ 99.70 Rounding to the nearest whole number gives:   h ≈ 100 hours Thus, the half-life of the element is approximately 100 hours.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the half-life of the radioactive element using the decay information given, we first note that the decay formula can be expressed as: \[ N(t) = N_0 e^{-kt} \] Where: - \( N(t) \) is the remaining quantity after time \( t \), - \( N_0 \) is the initial quantity, - \( k \) is the decay constant, - \( t \) is time. From the problem, we have \( N_0 = 250 \, \text{mg} \) and \( N(t) = 230 \, \text{mg} \) after \( t = 12 \, \text{hr} \). 1. We can set up the equation: \[ 230 = 250 e^{-12k} \] 2. Dividing both sides by 250 gives: \[ \frac{230}{250} = e^{-12k} \] 3. Taking the natural logarithm on both sides: \[ \ln\left(\frac{230}{250}\right) = -12k \] 4. Solving for \( k \): \[ k = -\frac{1}{12} \ln\left(\frac{230}{250}\right) \] Next, to find the half-life \( T_{1/2} \), we use the following relationship: \[ T_{1/2} = \frac{\ln(2)}{k} \] 5. Substitute \( k \) into the half-life equation: \[ T_{1/2} = \frac{\ln(2)}{-\frac{1}{12} \ln\left(\frac{230}{250}\right)} \] Now calculating this step-by-step: 1. Calculate \( k \): \[ k \approx -\frac{1}{12} \ln\left(0.92\right) \approx 0.0065 \] 2. Therefore, \[ T_{1/2} = \frac{0.693}{0.0065} \approx 106.46 \, \text{hr} \] After rounding to the nearest whole number, the half-life is approximately **106 hr**.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad