Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l l } { 16 = 4 ^ { 2 } } \\ { 8 ^ { - 2 } = \frac { 1 } { 64 } } & { 0 = \log _ { 6 } 1 } \\ { \log _ { x } x ^ { 4 } = 4 } \\ { m ^ { n } = P } & { \log _ { 6 } ( \frac { 1 } { 36 } ) = - 2 } \\ { 3 ^ { 0 } = 1 } & { 2 = \log _ { \frac { 1 } { 4 } } x } \\ { \frac { 1 } { 5 \times - 3 } = 0,001 } & { } \end{array} \right. \)

Ask by Willis Malone. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The true statements are: - \( 16 = 4^2 \) - \( 8^{-2} = \frac{1}{64} \) - \( 0 = \log_6 1 \) - \( \log_x x^4 = 4 \) - \( \log_6 \left( \frac{1}{36} \right) = -2 \) - \( 3^0 = 1 \) - \( 2 = \log_{\frac{1}{4}} x \) (where \( x = \frac{1}{16} \)) The false statement is: - \( \frac{1}{5 \times -3} = 0.001 \)

Solución

Let's analyze the given equations step by step. 1. **Equation 1:** \( 16 = 4^2 \) - This is a true statement since \( 4^2 = 16 \). 2. **Equation 2:** \( 8^{-2} = \frac{1}{64} \) - We can rewrite \( 8^{-2} \) as \( \frac{1}{8^2} \). - Since \( 8^2 = 64 \), we have \( 8^{-2} = \frac{1}{64} \), which is also true. 3. **Equation 3:** \( 0 = \log_6 1 \) - The logarithm of 1 in any base is 0, so this statement is true. 4. **Equation 4:** \( \log_x x^4 = 4 \) - Using the property of logarithms, we can rewrite this as \( 4 \cdot \log_x x = 4 \). - Since \( \log_x x = 1 \), we have \( 4 \cdot 1 = 4 \), which is true. 5. **Equation 5:** \( m^n = P \) - This is a general exponential equation and does not provide specific values. 6. **Equation 6:** \( \log_6 \left( \frac{1}{36} \right) = -2 \) - We can rewrite \( \frac{1}{36} \) as \( 6^{-2} \). - Therefore, \( \log_6 (6^{-2}) = -2 \), which is true. 7. **Equation 7:** \( 3^0 = 1 \) - This is a true statement since any non-zero number raised to the power of 0 is 1. 8. **Equation 8:** \( 2 = \log_{\frac{1}{4}} x \) - We can rewrite this as \( x = \left( \frac{1}{4} \right)^2 \). - Since \( \left( \frac{1}{4} \right)^2 = \frac{1}{16} \), we have \( x = \frac{1}{16} \). 9. **Equation 9:** \( \frac{1}{5 \times -3} = 0.001 \) - Calculating the left side: \( 5 \times -3 = -15 \), so \( \frac{1}{-15} \) is approximately -0.0667, which is not equal to 0.001. This statement is false. In summary, the true statements are: - \( 16 = 4^2 \) - \( 8^{-2} = \frac{1}{64} \) - \( 0 = \log_6 1 \) - \( \log_x x^4 = 4 \) - \( \log_6 \left( \frac{1}{36} \right) = -2 \) - \( 3^0 = 1 \) - \( 2 = \log_{\frac{1}{4}} x \) (where \( x = \frac{1}{16} \)) The false statement is: - \( \frac{1}{5 \times -3} = 0.001 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that logarithms were invented to make complex calculations simpler, acting like a bridge between multiplication and addition? The concept of logarithms dates back to the early 17th century, when mathematician John Napier introduced them. Imagine trying to solve a large multiplication problem without repeated addition—the logarithm was a game-changer in the world of mathematics, paving the way for advances in science and engineering! In everyday life, you might encounter logarithmic relationships in aspects like sound intensity measured in decibels or the Richter scale for earthquakes. This means when you feel the ground shake, scientists can describe its strength with a logarithmic scale. So, next time you hear about a magnitude 7 quake, remember it's not just a number—it's a logarithmic description of how much more intense it is than a magnitude 6!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad