\( \frac{3}{8} x-2=\frac{1}{8}(3 x-16) \) one solution no solution infinitely many solutions two solutions
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To solve the equation \( \frac{3}{8} x - 2 = \frac{1}{8}(3 x - 16) \), start by simplifying both sides. Distributing on the right side gives \( \frac{3}{8} x - 2 = \frac{3}{8} x - 2 \). When you bring all terms to one side, you get \( 0 = 0 \). This means every value of \( x \) satisfies the equation, leading us to conclude that there are infinitely many solutions! It’s a neat aspect of algebra that sometimes, instead of finding a single solution or a conflict, you can discover that an equation is true for all possible values of the variable. This happens when the two sides of the equation are identical after simplification—an algebraic harmony!
