Responder
Here are the solutions for the given systems of equations:
1. **1.8.1**
- **Equations:**
1. \( 2x^2 - 3xy = -4 \)
2. \( 4^{x+y} = 2^{y+4} \)
- **Solution:** No solutions exist that satisfy both equations simultaneously.
2. **1.8.2**
- **Equations:**
1. \( x^2 - 2xy - 3y^2 = 0 \)
2. \( y - x = 2 \)
- **Solutions:**
- \( (x, y) = (-1, 1) \)
- \( (x, y) = (-3, -1) \)
3. **1.8.3**
- **Equations:**
1. \( 3^{2x} = 3^{y-1} \)
2. \( 2x + 2y = 4 \)
- **Solutions:**
- \( (x, y) = \left(\frac{1}{3}, \frac{5}{3}\right) \) or \( (0.3\dot{3}, 1.6\dot{6}) \)
4. **1.8.4**
- **Equations:**
1. \( y - 4 = 2x \)
2. \( 2x^2 - 3xy + y^2 = 4 \)
- **Solution:**
- \( (x, y) = (-3, -2) \)
If you need further assistance or have additional questions, feel free to ask!
Solución
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y-4=2x\\2x^{2}-3xy+y^{2}=4\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=2x+4\\2x^{2}-3xy+y^{2}=4\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(2x^{2}-3x\left(2x+4\right)+\left(2x+4\right)^{2}=4\)
- step3: Simplify:
\(4x+16=4\)
- step4: Move the constant to the right side:
\(4x=4-16\)
- step5: Subtract the numbers:
\(4x=-12\)
- step6: Divide both sides:
\(\frac{4x}{4}=\frac{-12}{4}\)
- step7: Divide the numbers:
\(x=-3\)
- step8: Substitute the value of \(x:\)
\(y=2\left(-3\right)+4\)
- step9: Calculate:
\(y=-2\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=-3\\y=-2\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=-3\\y=-2\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(-3,-2\right)\)
Solve the system of equations \( x^{2}-2 x y-3 y^{2}=0; y-x=2 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{2}-2xy-3y^{2}=0\\y-x=2\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x^{2}-2xy-3y^{2}=0\\x=-2+y\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(-2+y\right)^{2}-2\left(-2+y\right)y-3y^{2}=0\)
- step3: Simplify:
\(4-4y^{2}=0\)
- step4: Move the constant to the right side:
\(-4y^{2}=0-4\)
- step5: Remove 0:
\(-4y^{2}=-4\)
- step6: Change the signs:
\(4y^{2}=4\)
- step7: Divide both sides:
\(\frac{4y^{2}}{4}=\frac{4}{4}\)
- step8: Divide the numbers:
\(y^{2}=1\)
- step9: Simplify the expression:
\(y=\pm \sqrt{1}\)
- step10: Simplify:
\(y=\pm 1\)
- step11: Separate into possible cases:
\(y=1\cup y=-1\)
- step12: Rearrange the terms:
\(\left\{ \begin{array}{l}x=-2+y\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-2+y\\y=-1\end{array}\right.\)
- step13: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-3\\y=-1\end{array}\right.\)
- step14: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=1\end{array}\right.\cup \left\{ \begin{array}{l}x=-3\\y=-1\end{array}\right.\)
- step15: Rewrite:
\(\left(x,y\right) = \left(-1,1\right)\cup \left(x,y\right) = \left(-3,-1\right)\)
Solve the system of equations \( 3^{2 x}=3^{y-1}; 2 x+2 y=4 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3^{2x}=3^{y-1}\\2x+2y=4\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}2x=y-1\\2x+2y=4\end{array}\right.\)
- step2: Solve the equation:
\(\left\{ \begin{array}{l}y=2x+1\\2x+2y=4\end{array}\right.\)
- step3: Substitute the value of \(y:\)
\(2x+2\left(2x+1\right)=4\)
- step4: Simplify:
\(6x+2=4\)
- step5: Move the constant to the right side:
\(6x=4-2\)
- step6: Subtract the numbers:
\(6x=2\)
- step7: Divide both sides:
\(\frac{6x}{6}=\frac{2}{6}\)
- step8: Divide the numbers:
\(x=\frac{1}{3}\)
- step9: Substitute the value of \(x:\)
\(y=2\times \frac{1}{3}+1\)
- step10: Substitute back:
\(y=2\times 3^{-1}+1\)
- step11: Calculate:
\(y=\frac{5}{3}\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=\frac{1}{3}\\y=\frac{5}{3}\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=\frac{1}{3}\\y=\frac{5}{3}\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(\frac{1}{3},\frac{5}{3}\right)\)
Solve the system of equations \( 2 x^{2}-3 x y=-4; 4^{x+y}=2^{y+4} \).
by following steps:
- step0: :
\(\left\{ \begin{array}{l}2x^{2}-3xy=-4\\4^{x+y}=2^{y+4}\end{array}\right.\)
- step1: Calculate:
\(\textrm{Undefined}\)
Here are the solutions for the given systems of equations:
### 1.8.1
**Equations:**
1. \( 2 x^{2} - 3 x y = -4 \)
2. \( 4^{x+y} = 2^{y+4} \)
**Solution:** The system is **undefined**, meaning there are no solutions that satisfy both equations simultaneously.
---
### 1.8.2
**Equations:**
1. \( x^{2} - 2 x y - 3 y^{2} = 0 \)
2. \( y - x = 2 \)
**Solution:** The solutions are:
- \( (x, y) = (-1, 1) \)
- \( (x, y) = (-3, -1) \)
---
### 1.8.3
**Equations:**
1. \( 3^{2 x} = 3^{y-1} \)
2. \( 2 x + 2 y = 4 \)
**Solution:** The solutions are:
- \( (x, y) = \left(\frac{1}{3}, \frac{5}{3}\right) \)
- Alternatively, in decimal form: \( (x, y) = (0.3\dot{3}, 1.6\dot{6}) \)
---
### 1.8.4
**Equations:**
1. \( y - 4 = 2 x \)
2. \( 2 x^{2} - 3 x y + y^{2} = 4 \)
**Solution:** The solution is:
- \( (x, y) = (-3, -2) \)
---
If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución