Pregunta
upstudy study bank question image url

STRETCH Optional 1 Describe how you can tell from an equation whether a function increases, decreases, or is constant.

Ask by Chan Munoz. in Germany
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To determine if a function is increasing, decreasing, or constant, check its derivative: - If the derivative is positive everywhere, the function is increasing. - If it's negative everywhere, the function is decreasing. - If it's zero everywhere, the function is constant. For a linear function f(x) = ax + b: - If a > 0, the function is increasing. - If a < 0, it's decreasing. - If a = 0, it's constant.

Solución

One common method is to look at the function’s derivative. For any function f(x): • If the derivative f '(x) is positive for every x in the function’s domain, then the function is increasing. • If f '(x) is negative for every x, the function is decreasing. • If f '(x) is zero for all x, the function is constant. For example, in the case of a linear function like f(x) = ax + b:  – If a > 0, then the function is increasing.  – If a < 0, then it’s decreasing.  – If a = 0, then the function is constant. This derivative approach extends to more complex functions as well.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine whether a function increases, decreases, or remains constant from its equation, you can analyze the function's derivative. If the derivative is positive over an interval, the function is increasing there; if it’s negative, the function is decreasing. If the derivative equals zero, the function is constant in that interval. For polynomial functions specifically, looking at the leading coefficient can also give hints about the end behavior, helping to gauge changes in the function's value. Additionally, you can use the concept of critical points obtained from the derivative's zeros. By testing intervals around these critical points, you can identify where the function changes behavior. Plotting the function or using a sign chart can also visually confirm where the function is increasing or decreasing. These techniques provide clarity and assist in sketching the function accurately!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad