A concave shaving mirror has a radius of curvature of +38.5 cm . It is positioned so that the (upright) image of a man's face is 1.84 times the size of the face. How far is the mirror from the face?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
The magnification of the mirror is given by the formula \( m = -\frac{d_i}{d_o} \), where \( d_i \) is the image distance and \( d_o \) is the object distance (distance from the face to the mirror). Since the image is upright and enlarged, we know \( m = 1.84 \). So, we have: \[ m = -\frac{d_i}{d_o} = 1.84 \] From this, we can express \( d_i \) in terms of \( d_o \): \[ d_i = -1.84 d_o \] The mirror equation relates the object distance and the image distance as follows: \[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \] To find the focal length \( f \), we can use the radius of curvature \( R \) of the mirror: \[ f = \frac{R}{2} = \frac{+38.5 \, \text{cm}}{2} = +19.25 \, \text{cm} \] (Note that for concave mirrors, the focal length is negative, so \( f = -19.25 \, \text{cm} \)). Now, plugging in the values: \[ \frac{1}{-19.25} = \frac{1}{d_o} + \frac{1}{-1.84 d_o} \] This simplifies to: \[ -\frac{1}{19.25} = \frac{1 - \frac{1}{1.84}}{d_o} \] Now, solving for \( d_o \): \[ d_o = \left(1 - \frac{1}{1.84}\right)^{-1} \cdot -19.25 \] Calculating this, we find: After doing the calculations, you’ll find the distance from the mirror to the man’s face (object distance, \( d_o \)) is approximately 12.87 cm.
