Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) Analyze the polynomial function \( f(x)=x^{2}(x-3) \) using parts (a) through (e). (a) Determine the end behavior of the graph of the function. The graph of \( f \) behaves like \( y=\square \) for large values of \( |x| \).

Ask by Knight Craig. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For very large values of |x|, the graph of \( f(x) = x^{2}(x - 3) \) behaves like \( y = x^{3} \).

Solución

To analyze the end behavior, identify the highest‐degree term of f(x). Expand the function:   f(x) = x²(x – 3) = x³ – 3x² The highest-degree term is x³. Therefore, for very large values of |x|, the behavior of f(x) is dominated by x³. In other words, the graph of f behaves like:   y = x³ This means:  • As x → +∞, f(x) → +∞.  • As x → –∞, f(x) → –∞. So, the answer to part (a) is: y = x³.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The end behavior of the graph of the function \( f(x) = x^{2}(x-3) \) can be analyzed by focusing on the leading term as \( x \) approaches positive or negative infinity. Since the highest degree term is \( x^{3} \), the graph behaves like \( y = x^{3} \) for large values of \( |x| \). This means that as \( x \to \infty \), \( f(x) \to \infty \), and as \( x \to -\infty \), \( f(x) \to -\infty \). To visualize this better, remember that polynomial functions are smooth and continuous. The degree of this polynomial (3) also indicates that it will have one end going to infinity and the other end going to negative infinity. This makes for interesting curves that can cross the x-axis at various points, depending on the factors present in the polynomial!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad