Pregunta
upstudy study bank question image url

If \( \sin \theta=-\frac{3}{5} \) and \( \cos \beta=\frac{4}{5}, \cos \theta<0 \) and \( \sin \beta<0 \), determine the value of \( \sin \theta \cos \beta-\cos \theta \sin \beta \)

Ask by Greene Wright. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( \sin \theta \cos \beta - \cos \theta \sin \beta \) is \( -\frac{24}{25} \).

Solución

To solve for \( \sin \theta \cos \beta - \cos \theta \sin \beta \), we can use the sine subtraction formula: \[ \sin(\theta - \beta) = \sin \theta \cos \beta - \cos \theta \sin \beta \] We need to find \( \sin(\theta - \beta) \) by determining \( \sin \theta \), \( \cos \theta \), \( \sin \beta \), and \( \cos \beta \). ### Step 1: Determine \( \cos \theta \) Given \( \sin \theta = -\frac{3}{5} \) and \( \cos \theta < 0 \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the value of \( \sin \theta \): \[ \left(-\frac{3}{5}\right)^2 + \cos^2 \theta = 1 \] Calculating \( \sin^2 \theta \): \[ \frac{9}{25} + \cos^2 \theta = 1 \] Now, solving for \( \cos^2 \theta \): \[ \cos^2 \theta = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] Taking the square root: \[ \cos \theta = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \] ### Step 2: Determine \( \sin \beta \) Given \( \cos \beta = \frac{4}{5} \) and \( \sin \beta < 0 \), we again use the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] Substituting the value of \( \cos \beta \): \[ \sin^2 \beta + \left(\frac{4}{5}\right)^2 = 1 \] Calculating \( \cos^2 \beta \): \[ \sin^2 \beta + \frac{16}{25} = 1 \] Now, solving for \( \sin^2 \beta \): \[ \sin^2 \beta = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] Taking the square root: \[ \sin \beta = -\sqrt{\frac{9}{25}} = -\frac{3}{5} \] ### Step 3: Calculate \( \sin \theta \cos \beta - \cos \theta \sin \beta \) Now we have: - \( \sin \theta = -\frac{3}{5} \) - \( \cos \theta = -\frac{4}{5} \) - \( \sin \beta = -\frac{3}{5} \) - \( \cos \beta = \frac{4}{5} \) Substituting these values into the expression: \[ \sin \theta \cos \beta - \cos \theta \sin \beta = \left(-\frac{3}{5}\right) \left(\frac{4}{5}\right) - \left(-\frac{4}{5}\right) \left(-\frac{3}{5}\right) \] Calculating each term: \[ = -\frac{12}{25} - \frac{12}{25} = -\frac{12}{25} - \frac{12}{25} = -\frac{24}{25} \] Thus, the final value is: \[ \boxed{-\frac{24}{25}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the value of \( \sin \theta \cos \beta - \cos \theta \sin \beta \), we can apply the sine of the difference of angles formula, which states: \[ \sin(\theta - \beta) = \sin \theta \cos \beta - \cos \theta \sin \beta \] We already know that \( \sin \theta = -\frac{3}{5} \) and \( \cos \beta = \frac{4}{5} \). Next, we need to determine \( \cos \theta \) and \( \sin \beta \). ### Finding \( \cos \theta \) Given that \( \sin \theta = -\frac{3}{5} \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the value for \( \sin \theta \): \[ \left(-\frac{3}{5}\right)^2 + \cos^2 \theta = 1 \] \[ \frac{9}{25} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \( \cos \theta = -\frac{4}{5} \) (since \( \cos \theta < 0 \)). ### Finding \( \sin \beta \) Given that \( \cos \beta = \frac{4}{5} \), we again use the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] Substituting the value for \( \cos \beta \): \[ \sin^2 \beta + \left(\frac{4}{5}\right)^2 = 1 \] \[ \sin^2 \beta + \frac{16}{25} = 1 \] \[ \sin^2 \beta = 1 - \frac{16}{25} = \frac{9}{25} \] Thus, \( \sin \beta = -\frac{3}{5} \) (since \( \sin \beta < 0 \)). ### Now calculate \( \sin \theta \cos \beta - \cos \theta \sin \beta \) Substituting everything back into the expression: \[ \sin \theta \cos \beta - \cos \theta \sin \beta = \left(-\frac{3}{5}\right)\left(\frac{4}{5}\right) - \left(-\frac{4}{5}\right)\left(-\frac{3}{5}\right) \] Calculating each term: \[ = -\frac{12}{25} - \frac{12}{25} \] \[ = -\frac{12}{25} - \frac{12}{25} = -\frac{24}{25} \] Thus, the final value is: \[ \boxed{-\frac{24}{25}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad