If \( \sin \theta=-\frac{3}{5} \) and \( \cos \beta=\frac{4}{5}, \cos \theta<0 \) and \( \sin \beta<0 \), determine the value of \( \sin \theta \cos \beta-\cos \theta \sin \beta \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the value of \( \sin \theta \cos \beta - \cos \theta \sin \beta \), we can apply the sine of the difference of angles formula, which states: \[ \sin(\theta - \beta) = \sin \theta \cos \beta - \cos \theta \sin \beta \] We already know that \( \sin \theta = -\frac{3}{5} \) and \( \cos \beta = \frac{4}{5} \). Next, we need to determine \( \cos \theta \) and \( \sin \beta \). ### Finding \( \cos \theta \) Given that \( \sin \theta = -\frac{3}{5} \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the value for \( \sin \theta \): \[ \left(-\frac{3}{5}\right)^2 + \cos^2 \theta = 1 \] \[ \frac{9}{25} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \( \cos \theta = -\frac{4}{5} \) (since \( \cos \theta < 0 \)). ### Finding \( \sin \beta \) Given that \( \cos \beta = \frac{4}{5} \), we again use the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] Substituting the value for \( \cos \beta \): \[ \sin^2 \beta + \left(\frac{4}{5}\right)^2 = 1 \] \[ \sin^2 \beta + \frac{16}{25} = 1 \] \[ \sin^2 \beta = 1 - \frac{16}{25} = \frac{9}{25} \] Thus, \( \sin \beta = -\frac{3}{5} \) (since \( \sin \beta < 0 \)). ### Now calculate \( \sin \theta \cos \beta - \cos \theta \sin \beta \) Substituting everything back into the expression: \[ \sin \theta \cos \beta - \cos \theta \sin \beta = \left(-\frac{3}{5}\right)\left(\frac{4}{5}\right) - \left(-\frac{4}{5}\right)\left(-\frac{3}{5}\right) \] Calculating each term: \[ = -\frac{12}{25} - \frac{12}{25} \] \[ = -\frac{12}{25} - \frac{12}{25} = -\frac{24}{25} \] Thus, the final value is: \[ \boxed{-\frac{24}{25}} \]
