Pregunta
upstudy study bank question image url

7) Decide whether or not the equation has a circle as its graph. \( x^{2}+y^{2}-8 x+8 y+23=0 \)

Ask by Deleon West. in Qatar
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation represents a circle with center at (4, –4) and a radius of 3.

Solución

To decide if the given equation has a circle as its graph, we first write it in the standard form for a circle. The equation is:   x² + y² – 8x + 8y + 23 = 0 Step 1: Group the x terms and y terms:   (x² – 8x) + (y² + 8y) + 23 = 0 Step 2: Complete the square for the x terms and y terms. For x² – 8x:   Take half of –8, which is –4, and square it to get 16.   Thus: x² – 8x + 16 becomes (x – 4)².   Remember to add and subtract 16 as needed.   For y² + 8y:   Take half of 8, which is 4, and square it to get 16.   Thus: y² + 8y + 16 becomes (y + 4)².   Again, add and subtract 16 to balance the equation. Step 3: Rewrite the equation incorporating these completed squares:   (x² – 8x + 16) + (y² + 8y + 16) – 16 – 16 + 23 = 0 Simplify the constants:   – 16 – 16 + 23 = –9 Thus, the equation becomes:   (x – 4)² + (y + 4)² – 9 = 0 Step 4: Add 9 to both sides to achieve the standard form of a circle's equation:   (x – 4)² + (y + 4)² = 9 The standard form for a circle is:   (x – h)² + (y – k)² = r² Comparing, we see that:   Center (h, k) = (4, –4)   Radius r = √9 = 3 Since the equation can be written in this form with r > 0, it represents a circle. Answer: Yes, the equation represents a circle with center (4, –4) and radius 3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if the equation represents a circle, we can first rewrite it in the standard form of a circle's equation, which is \((x - h)^2 + (y - k)^2 = r^2\). Start by rearranging and completing the square: 1. Rearranging the equation: \[ x^2 - 8x + y^2 + 8y + 23 = 0 \] \[ x^2 - 8x + y^2 + 8y = -23 \] 2. Completing the square: - For \(x\): \[ x^2 - 8x = (x - 4)^2 - 16 \] - For \(y\): \[ y^2 + 8y = (y + 4)^2 - 16 \] Now substitute back into the equation: \[ (x - 4)^2 - 16 + (y + 4)^2 - 16 = -23 \] \[ (x - 4)^2 + (y + 4)^2 - 32 = -23 \] \[ (x - 4)^2 + (y + 4)^2 = 9 \] This is indeed a circle with center \((4, -4)\) and radius \(3\). So, the original equation does have a circle as its graph! --- Did you know that the concept of a circle has been studied for thousands of years? Ancient Greek mathematicians like Euclid and Archimedes laid the groundwork for geometry, including circle properties, which are still essential in various fields today! Circles pop up everywhere in the real world! From wheels to pizza to the orbits of planets, understanding circles is foundational in engineering, astronomy, and even art. So, whether you're designing a bike tire or painting the perfect round canvas, the circle is your best friend!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad