nework Prove the identity. \[ \frac{1-\csc x}{\csc x+1}-\frac{\csc x+1}{1-\csc x}=4 \sec x \tan x \] To verify the identity, work each side separately until you obtain the same expression. Start with the left side. Choose the correct step and transform the expression according to the step chosen. 15 \( \frac{1-\csc x}{\csc x+1}-\frac{\csc x+1}{1-\csc x} \) \( =\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To begin simplifying the left side of the identity, we can combine the two fractions over a common denominator. The common denominator will be \((\csc x + 1)(1 - \csc x)\). So, we write: \[ \frac{(1 - \csc x)^2 - (\csc x + 1)^2}{(\csc x + 1)(1 - \csc x)} \] Now, let's simplify the numerator: \[ (1 - \csc x)^2 = 1 - 2\csc x + \csc^2 x \] \[ (\csc x + 1)^2 = \csc^2 x + 2\csc x + 1 \] Subtracting the second from the first gives: \[ (1 - 2\csc x + \csc^2 x) - (\csc^2 x + 2\csc x + 1) = -4\csc x \] Thus, the left side becomes: \[ \frac{-4 \csc x}{(\csc x + 1)(1 - \csc x)} = \frac{-4 \csc x}{-(\csc x^2 - 1)} = \frac{4 \csc x}{\csc^2 x - 1} \] Next, we recall that \(\csc^2 x - 1 = \cot^2 x\): \[ \frac{4 \csc x}{\cot^2 x} = 4 \csc x \cdot \tan^2 x = 4 \sec x \tan x \] Now we have shown that the left-hand side simplifies to the right-hand side of the identity, thus proving it. So, we write: \[ \frac{1-\csc x}{\csc x+1}-\frac{\csc x+1}{1-\csc x} = 4 \sec x \tan x \]
