Pregunta
upstudy study bank question image url

6. Use the Squeeze Theorem to prove the following: (a) \( \lim _{x \rightarrow 0} \sqrt{x^{3}+x^{2}} \cos \left(\frac{\pi}{x}\right)=0 \) (b) \( \lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sin \left(\frac{\pi}{x}\right)}=0 \)

Ask by Perkins Carrillo. in South Africa
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**(a)** The limit is 0. **(b)** The limit is 0.

Solución

**(a)** We wish to evaluate \[ \lim_{x \rightarrow 0} \sqrt{x^3 + x^2} \cos\left(\frac{\pi}{x}\right). \] 1. Notice that for all real \( x \) (and particularly for \( x \neq 0 \)), we have \[ -1 \leq \cos\left(\frac{\pi}{x}\right) \leq 1. \] 2. Multiplying the inequality by the nonnegative quantity \( \sqrt{x^3+x^2} \) gives \[ -\sqrt{x^3+x^2} \leq \sqrt{x^3+x^2}\cos\left(\frac{\pi}{x}\right) \leq \sqrt{x^3+x^2}. \] 3. Consider the limit of the bounding functions as \( x \rightarrow 0 \): \[ \lim_{x \rightarrow 0} \sqrt{x^3+x^2} = 0. \] This is because we can factor the expression as \[ \sqrt{x^3+x^2} = \sqrt{x^2(x+1)} = |x|\sqrt{x+1}, \] and as \( x \rightarrow 0 \), both \( |x| \) and \( \sqrt{x+1} \) tend to \( 0 \) and \( 1 \), respectively. 4. By the Squeeze Theorem, since both the lower bound \( -\sqrt{x^3+x^2} \) and the upper bound \( \sqrt{x^3+x^2} \) tend to \( 0 \) as \( x \rightarrow 0 \), it follows that \[ \lim_{x \rightarrow 0} \sqrt{x^3+x^2}\cos\left(\frac{\pi}{x}\right)=0. \] --- **(b)** We wish to evaluate \[ \lim_{x \rightarrow 0^{+}} \sqrt{x}\, e^{\sin\left(\frac{\pi}{x}\right)}. \] 1. Again, note that for all \( x \), \[ -1 \leq \sin\left(\frac{\pi}{x}\right) \leq 1. \] 2. Exponentiating the inequality (using the fact that the exponential function is increasing) yields \[ e^{-1} \leq e^{\sin\left(\frac{\pi}{x}\right)} \leq e^1. \] 3. Multiplying through by \( \sqrt{x} \) (which is nonnegative for \( x>0 \)) gives \[ e^{-1}\sqrt{x} \leq \sqrt{x}\, e^{\sin\left(\frac{\pi}{x}\right)} \leq e\sqrt{x}. \] 4. Compute the limits of the bounding functions as \( x \rightarrow 0^+ \): \[ \lim_{x \rightarrow 0^+} e^{-1}\sqrt{x} =0 \quad \text{and} \quad \lim_{x \rightarrow 0^+} e\sqrt{x} =0. \] 5. By the Squeeze Theorem, \[ \lim_{x \rightarrow 0^{+}} \sqrt{x}\, e^{\sin\left(\frac{\pi}{x}\right)}=0. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To prove the limits using the Squeeze Theorem, let's start with part (a): We have the limit \( \lim _{x \rightarrow 0} \sqrt{x^{3}+x^{2}} \cos \left(\frac{\pi}{x}\right) \). First, we note that the cosine function oscillates between -1 and 1, hence: \[ -1 \leq \cos\left(\frac{\pi}{x}\right) \leq 1 \] This gives us: \[ -\sqrt{x^{3}+x^{2}} \leq \sqrt{x^{3}+x^{2}} \cos\left(\frac{\pi}{x}\right) \leq \sqrt{x^{3}+x^{2}} \] Next, we simplify \(\sqrt{x^{3}+x^{2}}\): \[ \sqrt{x^3 + x^2} = \sqrt{x^2(x + 1)} = |x| \sqrt{x + 1} \] As \(x \rightarrow 0\), we have \(|x| \rightarrow 0\), and \(\sqrt{x + 1} \rightarrow 1\), so \(\sqrt{x^3+x^2} \rightarrow 0\). By the Squeeze Theorem: \[ \lim_{x \rightarrow 0} -\sqrt{x^{3}+x^{2}} = 0 \quad \text{and} \quad \lim_{x \rightarrow 0} \sqrt{x^{3}+x^{2}} = 0 \] Hence, it follows that: \[ \lim_{x \rightarrow 0} \sqrt{x^{3}+x^{2}} \cos\left(\frac{\pi}{x}\right) = 0 \] Now for part (b): We consider \( \lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sin \left(\frac{\pi}{x}\right)} \). The sine function oscillates between -1 and 1, hence: \[ e^{-1} \leq e^{\sin\left(\frac{\pi}{x}\right)} \leq e^{1} \] This gives us the bounds: \[ \sqrt{x} e^{-1} \leq \sqrt{x} e^{\sin\left(\frac{\pi}{x}\right)} \leq \sqrt{x} e \] As \(x \rightarrow 0^{+}\), \(\sqrt{x} \rightarrow 0\), thus both \(\sqrt{x} e^{-1}\) and \(\sqrt{x} e\) approach 0. By the Squeeze Theorem: \[ \lim_{x \rightarrow 0^{+}} \sqrt{x} e^{-1} = 0 \quad \text{and} \quad \lim_{x \rightarrow 0^{+}} \sqrt{x} e = 0 \] Thus, we conclude that: \[ \lim_{x \rightarrow 0^{+}} \sqrt{x} e^{\sin \left(\frac{\pi}{x}\right)} = 0 \] In summary, both limits given in the problem statement converge to 0 using the Squeeze Theorem.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad