Pregunta
upstudy study bank question image url

\begin{tabular}{l|l} Solve by factoring. \\ \( 2 y^{2}+3 y-5=0 \)\end{tabular} \left\lvert\, \( \begin{array}{l}\text { The solution(s) is/are } \square \text {. } \\ \text { (Simplify your answer. Type integers or fractions for any numbers in the } \\ \text { expression. Type an exact answer, using radicals and } i \text { as needed. Use a } \\ \text { comma to separate answers as needed.) }\end{array}\right. \)

Ask by Campos Christensen. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( y = -\frac{5}{2} \) and \( y = 1 \).

Solución

Solve the equation \( 2y^2+3y-5=0 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(2y^{2}+3y-5=0\) - step1: Factor the expression: \(\left(y-1\right)\left(2y+5\right)=0\) - step2: Separate into possible cases: \(\begin{align}&y-1=0\\&2y+5=0\end{align}\) - step3: Solve the equation: \(\begin{align}&y=1\\&y=-\frac{5}{2}\end{align}\) - step4: Rewrite: \(y_{1}=-\frac{5}{2},y_{2}=1\) The solutions to the equation \(2y^2 + 3y - 5 = 0\) by factoring are \(y = -\frac{5}{2}\) and \(y = 1\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the quadratic equation \( 2y^{2} + 3y - 5 = 0 \) by factoring, first, we need to rearrange the equation in the standard form. Next, we can find two numbers that multiply to \(-10\) (the product of \(2\) and \(-5\)) and add to \(3\). Those numbers are \(5\) and \(-2\). Rewrite the middle term: \[ 2y^{2} + 5y - 2y - 5 = 0 \] Now, group the terms: \[ (2y^{2} + 5y) + (-2y - 5) = 0 \] Factor out common terms: \[ y(2y + 5) - 1(2y + 5) = 0 \] This gives us: \[ (2y + 5)(y - 1) = 0 \] Setting each factor to zero, we find: \[ 2y + 5 = 0 \quad \Rightarrow \quad y = -\frac{5}{2} \] \[ y - 1 = 0 \quad \Rightarrow \quad y = 1 \] Thus, the solutions are \( y = -\frac{5}{2}, 1 \). \(\text{The solution(s) is/are } -\frac{5}{2}, 1 \text{.}\) Exploring the roots of quadratics dates back to ancient civilizations, notably the Babylonians, who used geometric methods to solve problems involving areas. Factoring specifically became a common technique in algebra during the Renaissance, making it accessible to students who were budding mathematicians! In real-world applications, quadratic equations show up in many surprising places—like when determining the trajectory of a basketball shot, optimizing profits in business models, or even in architecture, when calculating structural forces. Understanding how to solve these can truly give you a leg up in various fields!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad