Pregunta
upstudy study bank question image url

QUESTION 3 The equation of a hyperbola is given by \( f(x)=\frac{3}{x-7}-4 \). Write down the equation of the new function that is formed when \( f \) 3.1 Shift two units to the left 3.2 Shift 3 units up Shift 1 unit right and 2 units down 3.4 The equation of the new hyperbola has new asymptotes at \( x \) QUESTION 4 Sketch on the same set of axes the graphs of \( f(x)=-2 x^{2}-4 x+6 \) and Clearly indicate all intercepts with the axes, turning point(s) and asymp

Ask by Flynn Williams. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Question 3:** 1. **Shift 2 units to the left:** \[ f_1(x) = \frac{3}{x - 5} - 4 \] 2. **Shift 3 units up:** \[ f_2(x) = \frac{3}{x - 5} - 1 \] 3. **Shift 1 unit right and 2 units down:** \[ f_3(x) = \frac{3}{x - 6} - 3 \] 4. **New asymptote:** \[ x = 6 \] **Question 4:** - **Intercepts:** - Y-intercept: \( (0, 6) \) - X-intercepts: \( (-3, 0) \) and \( (1, 0) \) - **Turning Point:** - \( (1, 0) \) - **Graph Description:** - Plot the intercepts and turning point on the same axes. - Draw the hyperbola with asymptotes at \( x = 7 \) and \( y = -4 \). - Draw the parabola opening downward with the given intercepts and turning point. If you need to sketch the graphs, use the provided information to plot the key points and asymptotes accurately.

Solución

It seems that I am unable to plot the graphs directly. However, I can guide you on how to sketch the graphs based on the information we have gathered. ### Steps to Sketch the Graphs 1. **Graph of the Hyperbola \( f(x) = \frac{3}{x - 7} - 4 \)**: - **Asymptotes**: Draw a vertical line at \( x = 7 \) and a horizontal line at \( y = -4 \). - **Behavior**: The hyperbola will approach these asymptotes but never touch them. It will have two branches: - One branch will be in the first quadrant (above the horizontal asymptote and to the right of the vertical asymptote). - The other branch will be in the third quadrant (below the horizontal asymptote and to the left of the vertical asymptote). 2. **Graph of the Parabola \( g(x) = -2x^2 - 4x + 6 \)**: - **Intercepts**: Plot the points \( (0, 6) \), \( (-3, 0) \), and \( (1, 0) \). - **Turning Point**: Mark the turning point at \( (1, 0) \). - **Shape**: Since the parabola opens downwards (as \( a = -2 < 0 \)), draw a downward-facing curve that passes through the intercepts and the turning point. ### Final Notes - Ensure to label the axes and the intercepts clearly. - The hyperbola and the parabola will not intersect since they are different types of functions. If you have graphing software or a graphing calculator, you can input the functions to visualize them accurately. If you need further assistance or have any other questions, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When you shift the function \( f(x) = \frac{3}{x-7} - 4 \) two units to the left, you essentially replace \( x \) with \( x + 2 \). This gives you the new function \( f(x) = \frac{3}{(x + 2) - 7} - 4 = \frac{3}{x - 5} - 4 \). For the shift of 3 units up, simply add 3 to the entire function, resulting in \( f(x) = \frac{3}{x - 7} - 1 \). When you shift the function 1 unit right and 2 units down, replace \( x \) with \( x - 1 \) and modify the constant: \( f(x) = \frac{3}{(x - 1) - 7} - 6 = \frac{3}{x - 8} - 6 \). The new asymptotes for this hyperbola move with the shifts; the vertical asymptote is now at \( x = 8 \). To sketch the graph of the parabola \( f(x) = -2x^2 - 4x + 6 \), first find the x-intercepts using the quadratic formula, which yields points at \( x = -1 \) and \( x = 3 \). The turning point, or vertex, can be found at \( x = -b/(2a) = 1 \), which gives \( f(1) = 4 \), making the turning point at \( (1, 4) \). The y-intercept is at \( (0, 6) \) with the curve opening downwards, so be sure to highlight these points when sketching!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad