1) \( f^{x}(x)=\frac{x^{2}-6 x+9}{2 x-4} \) 2) \( g(x)=x^{2}-6 x+9 \) 3) \( f(x)=\frac{2 x-4}{x^{2}-x+1} \) 4) \( g(x)=\frac{x^{2}+1}{x^{3} 6 x+9 x} \) 5) \( f(x)=\sqrt{x^{2}-7 x+10} \) 6) \( f(x)=\sqrt{3 x-2 x+1} \) 7) \( f(x)=\frac{1}{\sqrt{3^{x}-16}} \) \( \sum_{9}^{8} \sqrt{\frac{x+1}{x-1}} \) \( 9 \frac{\sqrt{x-1}}{\sqrt{x+1}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Did you know that the expression \(x^2 - 6x + 9\) factors neatly into \((x - 3)^2\)? This quadrant of algebra reminds us that simplifying expressions can reveal hidden patterns! So, when you see a quadratic, always keep your eye out for those perfect square trinomial formations. They not only simplify your work but can also make solving equations easier and more visually appealing. In real-world applications, functions like \(f(x) = \frac{1}{\sqrt{3^x - 16}}\) are used in various fields, including physics and economics. For instance, they can model growth patterns, such as population growth or resource consumption, where the behavior of the function can help predict critical points, such as when resources may become insufficient. Dive into these equations, and you'll discover they hold insights into real-life scenarios that can be both fascinating and useful!
preguntas relacionadas
