\( f(x)=\frac{x+3}{(x-1)(x+3)} \quad \) Find the verical asymptotes and holes of the func
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the vertical asymptotes and holes of the function \( f(x)=\frac{x+3}{(x-1)(x+3)} \), we start by examining the denominator. A vertical asymptote occurs where the denominator equals zero, but the numerator is not zero at the same point. For this function, set the denominator \( (x-1)(x+3) = 0 \). This gives us \( x = 1 \) and \( x = -3 \). However, at \( x = -3 \), both the numerator and denominator are zero, indicating a hole rather than an asymptote. Thus, there's a hole at \( x = -3 \) and a vertical asymptote at \( x = 1 \). To remember this concept, visualize holes as "gaps" where the function isn't defined due to cancellation between numerator and denominator. The vertical asymptotes are where the function shoots off to infinity!
