Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( 3^{3} \times 3^{7} = 59049 \)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(3^{3}\times 3^{7}\)
- step1: Multiply:
\(3^{3+7}\)
- step2: Add the numbers:
\(3^{10}\)
- step3: Evaluate the power:
\(59049\)
To solve the expression \( 3^{3} \times 3^{7} \), we can use the property of exponents that states \( a^{m} \times a^{n} = a^{m+n} \).
1. Here, we have:
\[
3^{3} \times 3^{7} = 3^{3+7}
\]
2. Now, we add the exponents:
\[
3 + 7 = 10
\]
3. Therefore, we can rewrite the expression as:
\[
3^{10}
\]
4. Now, we calculate \( 3^{10} \):
\[
3^{10} = 59049
\]
Thus, the final answer is \( 59049 \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
When you multiply numbers with the same base, you add their exponents. So, \( 3^3 \times 3^7 = 3^{3+7} = 3^{10} \). To make it even sweeter, if you compute \( 3^{10} \), you'll get 59,049! Isn't math marvelous? Not only does this property of exponents simplify calculations, but it also shows up in various fields like computer science, where efficiency in algorithms often relies on understanding how to manipulate these fundamental rules. So, the next time you're building an app or crunching numbers, remember how useful these exponent rules can be!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium