Pregunta
upstudy study bank question image url

Oet Help / Oet Started Select all statements that correctly compare the graph of \( g \) with the graph of \( f(x)=\frac{1}{x} \). The graphs have the same asymptotes. The graphs have different asymptotes. The graphs have the same domain and range. The graphs have different domains and ranges. The graph of \( g \) lies closer to the axes than the graph of \( f \). The graph of \( g \) lies farther from the axes than the graph of \( f \). Both graphs are in the first and third quadrants. The graph of \( g \) is in the second and fourth quadrants, while the graph of \( f \) is in the first and third quadrants. Previous 1 2 3 4 5 6 7 8 9 10 Next Live Tutor

Ask by Howell Bond. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct statements are: 1. The graphs have the same asymptotes. 3. The graphs have the same domain and range. 8. The graph of \( g \) is in the second and fourth quadrants, while the graph of \( f \) is in the first and third quadrants.

Solución

We’ll show that if you start with f(x) = 1/x and let g be the reflection of f in the x‐axis, then g(x) = –1/x. (Any nonzero constant multiple of 1/x produces a graph with the same vertical and horizontal asymptotes and the same domain and range. In our example, the negative constant not only leaves these unchanged but also “flips” where the branches lie.) Let’s compare: • f(x) = 1/x has:  – vertical asymptote x = 0 and horizontal asymptote y = 0.  – domain: all real numbers except 0.  – range: all real numbers except 0.  – branches in the first and third quadrants. • g(x) = –1/x (obtained by multiplying f by –1) has:  – the same asymptotes (x = 0 and y = 0) since multiplying by –1 does not shift them.  – the same domain and range as f.  – its graph is a reflection across the x-axis; so the branch that was in the first quadrant is now in the second quadrant and the branch that was in the third quadrant is now in the fourth quadrant. Thus, the correct statements are: 1. The graphs have the same asymptotes. 3. The graphs have the same domain and range. 8. The graph of g is in the second and fourth quadrants, while the graph of f is in the first and third quadrants. Therefore, the correct answers are statements 1, 3, and 8.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The graphs have the same asymptotes. Both \( f(x) \) and \( g(x) \) might have vertical asymptotes at \( x = 0 \) and horizontal asymptotes at \( y = 0 \), indicating they share similar asymptotic behavior. However, to determine differences, one would need to analyze the specific form of \( g(x) \). The graph of \( g \) lies closer to the axes than the graph of \( f \). If \( g(x) \) is a transformation of \( f(x) = \frac{1}{x} \) that compresses the graph or alters the parameters positively, it could be expected to lie closer to the axes. This would manifest visually as a graph with lower values in the quadrants where both functions reside.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad