Pregunta
upstudy study bank question image url

Exō \( A B C \) est un triangle. On a \( A B=2 ; A C=4 \) et \( B C=2 \sqrt{5} \) ) calculer la ligne trigonométrique de \( A \hat{B C} \) 2)soit \( H \) le projete orthogonal de \( A \) sur \( (B C) \) calculer \( B H, A H \) Ex 4 ABC est un triangle reotangle en A . On a \( \sin \hat{B}=\frac{\sqrt{3}}{2} ; B C=6 \) ) calculer \( A B ; A C \) et déduire \( \cos \hat{B} \) et \( \tan \hat{B} \)

Ask by Bernard Kelley. in Morocco
Nov 21,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- \( \sin A \hat{B C} = 1 \) - \( BH = \sqrt{5} \) - \( AH = 2 \) - \( AB = 3 \) - \( AC = 3\sqrt{3} \) - \( \cos \hat{B} = \frac{1}{2} \) - \( \tan \hat{B} = \sqrt{3} \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

Pour le premier exercice, nous avons un triangle \( ABC \) avec les dimensions données. Pour calculer l’angle \( A \hat{B C} \), nous pouvons utiliser la loi des cosinus. En remplaçant les valeurs dans la formule, cela nous donnerait \( \cos(A \hat{B C}) = \frac{A B^2 + B C^2 - A C^2}{2 \cdot A B \cdot B C} \). Dans ce cas, nous devons substituer \( A B = 2 \), \( A C = 4 \), et \( B C = 2 \sqrt{5} \) pour obtenir la valeur de \( \cos(A \hat{B C}) \). Pour la deuxième partie, pour calculer les longueurs \( B H \) et \( A H \), nous devons d'abord déterminer la position du point \( H \) comme étant le projeté orthogonal de \( A \) sur la droite \( (B C) \). Une fois trouvé, on peut utiliser la formulation de la distance entre les points pour déterminer \( B H \) et \( A H \). Cela pourrait impliquer l'utilisation de la distance entre deux points dans le plan. Pour le second exercice, sachez que dans un triangle rectangle, les relations entre les côtés et les angles peuvent être définies par les fonctions trigonométriques. Puisque \( \sin \hat{B} = \frac{\sqrt{3}}{2} \), cela nous indique que \( \hat{B} \) correspond à 60 degrés. Avec \( BC = 6 \), nous pouvons utiliser les relations \( \sin \hat{B} = \frac{A C}{B C} \) et \( \cos \hat{B} = \frac{A B}{B C} \) pour calculer \( A B \) et \( A C \). En déduisant ces valeurs, vous pouvez aussi trouver \( \cos \hat{B} \) et \( \tan \hat{B} \) en utilisant les formules trigonométriques appropriées.

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad