Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { \cos 80 ^ { \circ } + \cos 40 ^ { \circ } = \cos 20 ^ { \circ } } \\ { \sin 75 ^ { \circ } - \cos 105 ^ { \circ } - \sin 15 ^ { \circ } - \cos 15 ^ { \circ } = 0 } \\ { \tan ( A + 45 ^ { \circ } ) = \frac { 1 + \tan A } { 1 - \tan A } } \end{array} \right. \)

Ask by Brooks Lowe. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The first two equations are always true, and the third equation is a known trigonometric identity.

Solución

Check the equality by following steps: - step0: Check the equality is true or false: \(\cos\left(80^{\circ}\right)+\cos\left(40^{\circ}\right)-\cos\left(20^{\circ}\right)=0\) - step1: Simplify: \(0=0\) - step2: Check the equality: \(\textrm{true}\) Solve the equation \( \sin 75 ^ { \circ } - \cos 105 ^ { \circ } - \sin 15 ^ { \circ } - \cos 15 ^ { \circ } = 0 \). Check the equality by following steps: - step0: Check the equality is true or false: \(\sin\left(75^{\circ}\right)-\cos\left(105^{\circ}\right)-\sin\left(15^{\circ}\right)-\cos\left(15^{\circ}\right)=0\) - step1: Simplify: \(0=0\) - step2: Check the equality: \(\textrm{true}\) Let's analyze the three equations step by step. 1. **First Equation:** \[ \cos 80^{\circ} + \cos 40^{\circ} = \cos 20^{\circ} \] This equation is true. The left-hand side simplifies to the right-hand side, confirming that this equation holds for all real values. 2. **Second Equation:** \[ \sin 75^{\circ} - \cos 105^{\circ} - \sin 15^{\circ} - \cos 15^{\circ} = 0 \] This equation is also true. The left-hand side simplifies to zero, confirming that this equation holds for all real values. 3. **Third Equation:** \[ \tan(A + 45^{\circ}) = \frac{1 + \tan A}{1 - \tan A} \] This equation is a known identity in trigonometry, which states that: \[ \tan(A + 45^{\circ}) = \frac{\tan A + 1}{1 - \tan A} \] However, it seems that the calculation for this equation was unsupported. In summary: - The first two equations are true for all real values. - The third equation is a trigonometric identity, but we couldn't compute a specific solution due to unsupported calculations. If you need further assistance or specific values for \( A \) in the third equation, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that trigonometric identities have been discovered and debated since ancient Greek mathematicians like Hipparchus and Ptolemy? These early scholars laid the groundwork for many of the relationships we still use today, such as the famous sine and cosine relationships. Understanding how these identities were formed can give you greater insight into their applications even in modern physics, engineering, and architecture! If you ever find yourself struggling with trigonometric equations, remember that common mistakes often stem from misapplying identities or failing to check your calculator settings. For angles, always ensure you're in the right mode (degrees vs. radians). Try breaking down complex problems into simpler parts—sometimes rewriting the equation using known identities can illuminate a clearer path to the solution. Happy solving!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad