\( \sin ^{2}\left(\frac{\pi}{8}\right)+\sin ^{2}\left(\frac{3 \pi}{8}\right)+\sin ^{2}\left(\frac{5 \pi}{8}\right)+\sin ^{2}\left(\frac{7 \pi}{8}\right) \) Correction
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Did you know that the angles \( \frac{\pi}{8} \), \( \frac{3\pi}{8} \), \( \frac{5\pi}{8} \), and \( \frac{7\pi}{8} \) correspond to specific points on the unit circle? Their sine values represent the vertical distances from the x-axis to the circle at those angles, making it easy to visualize why these particular sine squares are often analyzed together. Add some geometry to your math! When calculating \( \sin^{2}\left(\frac{\pi}{8}\right) + \sin^{2}\left(\frac{3 \pi}{8}\right) + \sin^{2}\left(\frac{5 \pi}{8}\right) + \sin^{2}\left(\frac{7 \pi}{8}\right) \), you might notice some repeated values. Specifically, \( \sin\left(\frac{5\pi}{8}\right) = \sin\left(\frac{3\pi}{8}\right) \) and \( \sin\left(\frac{7\pi}{8}\right) = \sin\left(\frac{\pi}{8}\right) \). This can simplify calculations and reduce potential mistakes—always good to double-check your inputs!
