Pregunta
upstudy study bank question image url

QUESTION 2 Hyperbola - The gruph of \( g(x)=\frac{a}{x+D}+q \) 2.1 Draw the graphs of the equations below according to the Graph Papers indicated: First Graph Paper Original Graph (M): \( y=\frac{1}{x} \) Graph 1: \( y=\frac{0}{x} \) Graph 2: \( y=\frac{2}{x} \) Gruph 3: \( y=-\frac{1}{x} \) Second Graph Paper Original Graph (M): \( y=\frac{4}{x} \) Graph \( 1: y=\frac{4}{x}+2 \) Graph 2: \( y=\frac{4}{x}-1 \) Graph 3: \( y=\frac{0}{x}+2 \) Graph \( 4: y=-\frac{8}{x}-1 \) Third Graph Paper Original Graph (M): \( y=\frac{1}{x} \) Gruph I: \( y=\frac{4}{x-2} \) Graph 2: \( y=\frac{1}{x+2} \) Graph 3: \( y=\frac{1}{x-2}-1 \) Graph 4: \( y=\frac{1}{x+2}+2 \)

Ask by Nichols Joseph. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To draw the graphs of the given equations: 1. **First Graph Paper:** - **Original Graph (M):** \( y = \frac{1}{x} \) (standard hyperbola) - **Graph 1:** \( y = 0 \) (horizontal line) - **Graph 2:** \( y = \frac{2}{x} \) (stretched hyperbola) - **Graph 3:** \( y = -\frac{1}{x} \) (reflected hyperbola) 2. **Second Graph Paper:** - **Original Graph (M):** \( y = \frac{4}{x} \) - **Graph 1:** \( y = \frac{4}{x} + 2 \) (shifted up) - **Graph 2:** \( y = \frac{4}{x} - 1 \) (shifted down) - **Graph 3:** \( y = 2 \) (horizontal line) - **Graph 4:** \( y = -\frac{8}{x} - 1 \) (stretched and shifted down) 3. **Third Graph Paper:** - **Original Graph (M):** \( y = \frac{1}{x} \) - **Graph I:** \( y = \frac{4}{x-2} \) (shifted right and stretched) - **Graph 2:** \( y = \frac{1}{x+2} \) (shifted left) - **Graph 3:** \( y = \frac{1}{x-2} - 1 \) (shifted right and down) - **Graph 4:** \( y = \frac{1}{x+2} + 2 \) (shifted left and up) Each graph is a variation of the basic hyperbola \( y = \frac{1}{x} \) with different transformations applied.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

The hyperbola, such as those graphed from the equations provided, comes from the division of a constant by a variable, leading to the signature "two branches" shape. The original graph \(y=\frac{1}{x}\) serves as a basic foundation that helps you see how transformations affect the graph's position and shape. By adjusting parameters like numerator, denominator shifts, and signs, you create unique variations that reveal fascinating properties of rational functions. When applying hyperbolic equations in real life, you might find their beauty in modeling phenomena like gravitational force or economic supply and demand. For instance, if you graph the equation of a supply curve against price levels, often the shape can resemble that of a hyperbola. Understanding how these graphs behave helps businesses predict the impact of price changes on supply, giving them valuable insight into market dynamics!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad