Solve the following inequality. \[ (x+4)(x+9)(5-x)<0 \] Write your answer as an interval or union of intervals. If there is no real solution, click on "No solution".
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To solve the inequality \((x+4)(x+9)(5-x) < 0\), we first find the points where the expression equals zero: 1. \(x + 4 = 0 \implies x = -4\) 2. \(x + 9 = 0 \implies x = -9\) 3. \(5 - x = 0 \implies x = 5\) This gives us three critical points: \(-9\), \(-4\), and \(5\). We will use these points to test the sign of the expression in the intervals they divide the number line into: 1. **Interval** \((-∞, -9)\): Choose \(x = -10\) \(((-10 + 4)((-10 + 9)(5 - (-10)) = (-6)(-1)(15) > 0\) 2. **Interval** \((-9, -4)\): Choose \(x = -6\) \(((-6 + 4)((-6 + 9)(5 - (-6)) = (-2)(3)(11) < 0\) 3. **Interval** \((-4, 5)\): Choose \(x = 0\) \(((0 + 4)((0 + 9)(5 - 0)) = (4)(9)(5) > 0\) 4. **Interval** \((5, ∞)\): Choose \(x = 6\) \(((6 + 4)((6 + 9)(5 - 6)) = (10)(15)(-1) < 0\) Now, let's compile the intervals where the product is negative: - The product is negative in \((-9, -4)\) and \((5, ∞)\). Thus, the solution to the inequality \((x+4)(x+9)(5-x)<0\) is: \[ (-9, -4) \cup (5, \infty) \]
