A quantity with an initial value of 7200 decays exponentially at a rate of \( 0.3 \% \) every day. What is value of the quantity after 10 weeks, to the nearest hundredth?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To calculate the value of the quantity after 10 weeks, given an initial value of 7200 that decays at a rate of 0.3% per day, we can use the formula for exponential decay: \[ A = A_0 e^{-kt} \] Where: - \( A_0 = 7200 \) - \( k = 0.003 \) (the decay rate in decimal form) - \( t = 10 \text{ weeks} = 10 \times 7 = 70 \text{ days} \) Substituting the values into the formula gives us: \[ A = 7200 \times e^{-0.003 \times 70} \] Calculating the exponent: \[ 0.003 \times 70 = 0.21 \] Now we plug that back into the equation: \[ A = 7200 \times e^{-0.21} \] Calculating \( e^{-0.21} \): Approximately, \( e^{-0.21} \approx 0.809 \). Finally, multiplying: \[ A \approx 7200 \times 0.809 \approx 5824.80 \] The value of the quantity after 10 weeks is approximately **5824.80** to the nearest hundredth.
