Pregunta
upstudy study bank question image url

The length of a rectangular lawn is two times of its breadth. If its perimeter is 120 m , find its length and breadth. The length and breadth of a rectangular park are in the ratio \( 5: 2 \). If its derimeter is 168 m , find its length and breadth.

Ask by Gough Kelly. in Nepal
Feb 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Rectangular Lawn: Length = 40 m, Breadth = 20 m Rectangular Park: Length = 60 m, Breadth = 24 m

Solución

We can solve these problems by first expressing the relationships in equations and then using the formula for the perimeter of a rectangle. Problem 1: Given that the length (L) is two times the breadth (B), we have:   L = 2B The perimeter (P) of a rectangle is given by:   P = 2(L + B) Plug in the given perimeter (120 m) and the expression for L:   2(2B + B) = 120   2(3B) = 120   6B = 120 Solve for B:   B = 120 / 6 = 20 m Now, find L:   L = 2B = 2 × 20 = 40 m Problem 2: The length and breadth of a park are in the ratio 5:2. Let:   L = 5k and B = 2k, where k is a constant. The perimeter is given as 168 m:   P = 2(L + B) = 2(5k + 2k) = 2(7k) = 14k Set up the equation:   14k = 168 Solve for k:   k = 168 / 14 = 12 Now, find L and B:   L = 5k = 5 × 12 = 60 m   B = 2k = 2 × 12 = 24 m Summary of Results: - Rectangular Lawn: Length = 40 m and Breadth = 20 m. - Rectangular Park: Length = 60 m and Breadth = 24 m.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle the first problem, we know the formula for perimeter is \( P = 2 \times (length + breadth) \). If we let the breadth be \( b \), then the length \( l = 2b \). Plugging this into the perimeter equation gives us \( 120 = 2 \times (2b + b) \). Solving this, we find that \( b = 24 \) m and hence \( l = 48 \) m. Moving on to the second park problem, we let the breadth be \( 2x \) and the length be \( 5x \). The perimeter formula becomes \( 168 = 2 \times (5x + 2x) = 14x \). Solving for \( x \), we find \( x = 12 \). Therefore, the breadth is \( 24 \) m and the length is \( 60 \) m.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad