Pregunta
upstudy study bank question image url

Complete the equation for the circle with center \( (-2,-4) \) and radius 9 . \( (x+2 \)

Ask by May Vega. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the circle is \( (x + 2)^2 + (y + 4)^2 = 81 \).

Solución

To complete the equation of a circle, we use the standard form of the equation of a circle, which is given by: \[ (x - h)^2 + (y - k)^2 = r^2 \] where \((h, k)\) is the center of the circle and \(r\) is the radius. Given: - Center \((h, k) = (-2, -4)\) - Radius \(r = 9\) Now, we can substitute these values into the standard form: 1. Substitute \(h = -2\) and \(k = -4\): \[ (x - (-2))^2 + (y - (-4))^2 = 9^2 \] 2. This simplifies to: \[ (x + 2)^2 + (y + 4)^2 = 81 \] Thus, the complete equation of the circle is: \[ (x + 2)^2 + (y + 4)^2 = 81 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The equation of a circle can be formulated with the center coordinates and the radius. For a circle with center \( (-2, -4) \) and radius 9, the equation is: \[ (x + 2)^2 + (y + 4)^2 = 81. \] So, you just need to complete it by adding \( (y + 4)^2 \) and setting it equal to \( 9^2 = 81 \). Did you know that circles are not just beautiful geometrical shapes but have been studied for centuries? The ancient Greeks, especially mathematicians like Euclid and Archimedes, made significant strides in understanding their properties and applications. Their studies laid the foundational work for geometry, which still plays a crucial role in modern mathematics! If you're trying to visualize this equation, it's a great idea to graph it! Start by plotting the center at \( (-2, -4) \) on a coordinate plane. Then, measure a distance of 9 units in all directions (up, down, left, right). Connecting those points will form your perfect circle! Just remember that each point on the circle maintains the same distance from the center—it's all about that radius!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad