Pregunta
upstudy study bank question image url

Tacoma's population in 2000 was about 200,000 people, and has been growing by about \( 8 \% \) each year. If the population continues to grow according to the model \( P_{n}=P_{0}(1+r)^{n} \). what will Tacoma's population be in 2015 ? Round the estimated population to the nearest thousand. people Substion Help: Qvideo

Ask by King Murphy. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Tacoma's population in 2015 will be approximately 634,000 people.

Solución

To find the population of Tacoma in 2015, we can use the given population growth model: \[ P_{n} = P_{0}(1 + r)^{n} \] Given: - Initial population in 2000, \( P_{0} = 200,000 \) people - Annual growth rate, \( r = 8\% = 0.08 \) - Year for which we want to find the population, \( n = 2015 - 2000 = 15 \) years Substitute the given values into the model: \[ P_{15} = 200,000(1 + 0.08)^{15} \] Now, we can calculate the population of Tacoma in 2015 using the given model. Calculate the value by following steps: - step0: Calculate: \(200000\left(1+0.08\right)^{15}\) - step1: Add the numbers: \(200000\times 1.08^{15}\) - step2: Convert the expressions: \(200000\left(\frac{27}{25}\right)^{15}\) - step3: Simplify: \(200000\times \frac{27^{15}}{25^{15}}\) - step4: Rewrite the expression: \(3125\times 64\times \frac{27^{15}}{25^{15}}\) - step5: Rewrite the expression: \(5^{5}\times 64\times \frac{27^{15}}{5^{30}}\) - step6: Reduce the numbers: \(64\times \frac{27^{15}}{5^{25}}\) - step7: Multiply: \(\frac{64\times 27^{15}}{5^{25}}\) The population of Tacoma in 2015 will be approximately 634,433.82 people. Rounding this to the nearest thousand, the estimated population of Tacoma in 2015 will be approximately 634,000 people.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find Tacoma's population in 2015 using the given growth model \( P_{n} = P_{0}(1+r)^{n} \), we first set \( P_{0} = 200,000 \), \( r = 0.08 \), and \( n = 15 \) (since 2015 is 15 years after 2000). Plugging in these values: \[ P_{15} = 200,000(1 + 0.08)^{15} \] Calculating the exponent: \[ (1.08)^{15} \approx 3.1728 \] Now multiply: \[ P_{15} \approx 200,000 \times 3.1728 \approx 634,560 \] Rounding to the nearest thousand, Tacoma's estimated population in 2015 would be approximately **635,000 people**. In a burst of population growth, Tacoma's transformation has been like a thrilling time-lapse movie! From its industrial roots, the city embraced a vibrant community filled with diverse cultures and stunning scenery, from Mount Rainier’s backdrop to waterfront views, attracting new residents year after year! If you're curious about urban population trends or demographic shifts, check out local population studies and growth forecasts. Websites like the U.S. Census Bureau offer fascinating data on how cities evolve, revealing historical patterns and providing insight into future expansions—all while revealing the stories behind the numbers!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad