Pregunta
upstudy study bank question image url

Points] DETAILS MY NOTES SPRECALC8 4.6.024.MI. This exercise uses the radioactive decay model. Radium- 221 has a half-life of 30 s . How long (in seconds) will it take for \( 82 \% \) of a sample to decay? (Round your answer to the nearest whole number. Need Help? Favila SUBMIT ANSWER

Ask by Norton Hanson. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 74 seconds for 82% of the Radium-221 sample to decay.

Solución

We start with the formula for radioactive decay:   N(t) = N₀ · (1/2)^(t / T₁/₂) Here, T₁/₂ = 30 seconds for Radium-221. The exercise states that 82% of the sample decays, which means 18% remains:   N(t) / N₀ = 0.18 Now set up the equation:   0.18 = (1/2)^(t / 30) To solve for t, take the natural logarithm of both sides:   ln(0.18) = (t / 30) · ln(1/2) Solve for t:   t = 30 · (ln(0.18) / ln(1/2)) Using approximate logarithm values:   ln(0.18) ≈ -1.7148   ln(0.5) ≈ -0.6931 Substitute these in:   t ≈ 30 · (-1.7148 / -0.6931)   t ≈ 30 · 2.472   t ≈ 74.16 seconds Rounded to the nearest whole number, it will take approximately 74 seconds for 82% of a sample to decay.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the time it takes for \( 82\% \) of Radium-221 to decay, we can use the formula for radioactive decay: \[ N(t) = N_0 \times \left( \frac{1}{2} \right)^{\frac{t}{T_{1/2}}} \] where \( N(t) \) is the remaining amount, \( N_0 \) is the initial amount, \( T_{1/2} \) is the half-life, and \( t \) is the time. If \( 82\% \) has decayed, then \( 18\% \) remains. Set up the equation: \[ 0.18N_0 = N_0 \times \left( \frac{1}{2} \right)^{\frac{t}{30}} \] Dividing both sides by \( N_0 \): \[ 0.18 = \left( \frac{1}{2} \right)^{\frac{t}{30}} \] Now, take the logarithm of both sides and solve for \( t \): \[ \log(0.18) = \frac{t}{30} \log(0.5) \] Thus, \[ t = 30 \times \frac{\log(0.18)}{\log(0.5)} \] Calculating that out will give you the time in seconds. Round that to the nearest whole number for your answer! Finally, let the math bring you to the thrill of scientific discovery, where formulas unlock the secrets of time and decay! Don't forget, understanding how radioactive isotopes decay isn't just smart; it makes you the life of the party when discussing elements! And remember, practice makes perfect. So dive into more examples to solidify your grasp on this fascinating topic!

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad