Pregunta
upstudy study bank question image url

Write down the equations of the asymptotes of the functions below \( g(x)=3 \tan (2 x) \) where \( x \in\left[-90^{\circ} ; 90^{\circ}\right] \)

Ask by Pollard Sherman. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( g(x) = 3 \tan(2x) \) has vertical asymptotes at \( x = -\frac{\pi}{4} \) and \( x = \frac{\pi}{4} \). There are no horizontal asymptotes for this function.

Solución

To find the asymptotes of the function \( g(x) = 3 \tan(2x) \), we need to analyze the function step by step. ### Step 1: Identify Vertical Asymptotes The vertical asymptotes of the tangent function occur where the function is undefined, which is at the points where the argument of the tangent function is equal to \( \frac{\pi}{2} + k\pi \) for any integer \( k \). For \( g(x) = 3 \tan(2x) \), we set the argument \( 2x \) equal to \( \frac{\pi}{2} + k\pi \): \[ 2x = \frac{\pi}{2} + k\pi \] Solving for \( x \): \[ x = \frac{\pi}{4} + \frac{k\pi}{2} \] ### Step 2: Determine Values of \( k \) Given the domain \( x \in [-90^\circ, 90^\circ] \) (which is equivalent to \( x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)), we can find the values of \( k \): 1. For \( k = -1 \): \[ x = \frac{\pi}{4} - \frac{\pi}{2} = -\frac{\pi}{4} \quad (\text{valid}) \] 2. For \( k = 0 \): \[ x = \frac{\pi}{4} \quad (\text{valid}) \] 3. For \( k = 1 \): \[ x = \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4} \quad (\text{not valid, exceeds } \frac{\pi}{2}) \] Thus, the vertical asymptotes are at: \[ x = -\frac{\pi}{4} \quad \text{and} \quad x = \frac{\pi}{4} \] ### Step 3: Identify Horizontal Asymptotes The function \( g(x) = 3 \tan(2x) \) does not have horizontal asymptotes because the tangent function approaches infinity as \( x \) approaches the vertical asymptotes. Therefore, there are no horizontal asymptotes for this function. ### Summary of Asymptotes - **Vertical Asymptotes:** \( x = -\frac{\pi}{4} \) and \( x = \frac{\pi}{4} \) - **Horizontal Asymptotes:** None If you need further assistance or clarification, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The function \( g(x) = 3 \tan(2x) \) has vertical asymptotes where the tangent function is undefined, which occurs at \( 2x = \frac{\pi}{2} + k\pi \) for any integer \( k \). Therefore, solving for \( x \) gives the asymptotes at \( x = \frac{\pi}{4} + \frac{k\pi}{2} \). Within the interval \( \left[-90^{\circ}; 90^{\circ}\right] \) or \( \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \), we find \( x = \frac{\pi}{4} \) (which is \( 45^\circ \)) and \( x = -\frac{\pi}{4} \) (which is \( -45^\circ \)). These are our vertical asymptotes: - \( x = 45^\circ \) - \( x = -45^\circ \)

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad