Pregunta
upstudy study bank question image url

QUESION 6 NOR Given: \( f(x)=\frac{2}{x-1}-2 \) 4.1 Write down the equations of the asymptote 4.3 Draw a graph of \( f \). Clearly label ALL the asymptotes on your graph. Fotermine the equation of the line of symm 4.4

Ask by Chen Stanley. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The vertical asymptote is at \( x = 1 \) and the horizontal asymptote is at \( y = 0 \). The line of symmetry is \( x = 1 \).

Solución

To find the equations of the asymptotes of the function \( f(x) = \frac{2}{x-1} - 2 \), we need to consider the vertical asymptote and the horizontal asymptote. 1. **Vertical Asymptote:** The vertical asymptote occurs when the denominator of the function is equal to zero. In this case, the denominator is \( x - 1 \). Therefore, the vertical asymptote is at \( x = 1 \). 2. **Horizontal Asymptote:** To find the horizontal asymptote, we need to consider the behavior of the function as \( x \) approaches infinity. Since the function is a rational function, the horizontal asymptote is determined by the degree of the numerator and the denominator. In this case, the degree of the numerator is 0 and the degree of the denominator is 1. Therefore, the horizontal asymptote is the line \( y = 0 \). Now, let's draw the graph of \( f(x) \) and label the asymptotes. The graph of \( f(x) \) will have a vertical asymptote at \( x = 1 \) and a horizontal asymptote at \( y = 0 \). To find the equation of the line of symmetry, we need to find the axis of symmetry of the graph. The axis of symmetry is the vertical line that passes through the vertex of the graph. Since the graph is a rational function, the axis of symmetry is the vertical line \( x = 1 \). Therefore, the equation of the line of symmetry is \( x = 1 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The rational function \( f(x) = \frac{2}{x-1} - 2 \) has a vertical asymptote where the denominator equals zero. Thus, the equation of the vertical asymptote is \( x = 1 \). For the horizontal asymptote, as \( x \) approaches infinity, the function approaches \( y = -2 \), so the equation for the horizontal asymptote is \( y = -2 \). When drawing the graph of \( f(x) \), plot the vertical asymptote at \( x = 1 \) and the horizontal asymptote at \( y = -2 \). The function approaches but never touches these lines, resulting in two distinct curved sections in the graph. Make sure to label both asymptotes clearly on the graph for clarity!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad