Pregunta
upstudy study bank question image url

The function \( f \) is defined as follows. \( f(x)=\left\{\begin{array}{ll}-2 x+3 & \text { if } x<1 \\ 2 x-1 & \text { if } x \geq 1\end{array}\right. \) (a) Find the domain of the function. (b) Locate any intercepts. (c) Graph the function. (d) Based on the graph, find the range. (a) The domain of the function \( f \) is (Type your answer in interval notation.)

Ask by Guerrero Bob. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The domain of the function \( f \) is all real numbers, written as \( (-\infty, \infty) \).

Solución

(a) Answer: (-∞, ∞) Explanation: The function is defined by two rules that cover every real number. For x < 1, you have −2x + 3, and for x ≥ 1, you have 2x − 1. Since every x falls into one of these cases, the domain is all real numbers, which in interval notation is (-∞, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The domain of the function \( f \) is all real numbers, as there are no restrictions on the values \( x \) can take. Therefore, in interval notation, the domain is \( (-\infty, \infty) \). Now, let's consider intercepts and other features! To find the y-intercept, set \( x = 0 \) in the first case of the function: \( f(0) = -2(0) + 3 = 3 \), giving the y-intercept \((0, 3)\). For the x-intercept, set \( f(x) = 0 \): 1. From \( -2x + 3 = 0 \) when \( x < 1 \), solve for \( x = \frac{3}{2} \), but \( \frac{3}{2} \geq 1 \), so no x-intercept from this case. 2. From \( 2x - 1 = 0 \) when \( x \geq 1 \), solve \( x = \frac{1}{2} \), but this \( x \) isn't in the domain of that case. Thus, the only intercept is at \( (0, 3) \). For the graph, plot the two segments: the first line, \( f(x) = -2x + 3 \) for \( x < 1 \) (which crosses the y-axis at 3 and has a slope of -2), and the second, \( f(x) = 2x - 1 \) for \( x \geq 1 \) (crossing the y-axis at -1). The range of the function from the graph is \( (-\infty, 3] \) from the first branch and \( [-1, \infty) \) from the second branch, but since the first branch hits a maximum at \( y = 3 \), the overall range is \( (-\infty, \infty) \).

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad