Pregunta
upstudy study bank question image url

What is the future value after 12 years if you deposit \( \$ 1,000 \) for your child's education and the interest is guaranteed at \( 1.9 \% \) compounded continuously? (Round your answer to the nearest cent.) \( \$ \)

Ask by Wade Powers. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The future value after 12 years is approximately \$1,256.09.

Solución

To find the future value after 12 years with continuous compounding, we can use the formula for continuous compounding: \[ FV = PV \times e^{rt} \] Where: - \( FV \) is the future value - \( PV \) is the present value (initial deposit) - \( r \) is the annual interest rate - \( t \) is the time in years Given: - \( PV = \$1,000 \) - \( r = 1.9\% = 0.019 \) - \( t = 12 \) years Substitute the values into the formula: \[ FV = 1000 \times e^{0.019 \times 12} \] Now, we can calculate the future value using the formula for continuous compounding. Calculate the value by following steps: - step0: Calculate: \(1000e^{0.019\times 12}\) - step1: Multiply the numbers: \(1000e^{0.228}\) - step2: Convert the expressions: \(1000e^{\frac{57}{250}}\) - step3: Rewrite the expression: \(1000\sqrt[250]{e^{57}}\) The future value after 12 years with continuous compounding is approximately $1,256.09.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the future value \( FV \) of an investment compounded continuously, you can use the formula: \[ FV = P \times e^{rt} \] where: - \( P \) is the principal amount (initial deposit), - \( r \) is the interest rate (as a decimal), - \( t \) is the time in years, - \( e \) is the base of the natural logarithm (approximately equal to 2.71828). In this case: - \( P = 1000 \) - \( r = 0.019 \) (1.9% as a decimal) - \( t = 12 \) Plugging in the values: \[ FV = 1000 \times e^{0.019 \times 12} \] Calculating \( e^{0.019 \times 12} \): \[ FV = 1000 \times e^{0.228} \] Now, calculating \( e^{0.228} \) gives approximately 1.256. Now, calculate the future value: \[ FV = 1000 \times 1.256 \approx 1256.63 \] So, the future value after 12 years will be approximately: \[ \boxed{1256.63} \]

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad