Pregunta
upstudy study bank question image url

A hot-air balloon is flying at an altitude of 2589 feet. If the angle of depression from the pilot in the balloon to a house on the ground below is \( 32^{\circ} \), how far is the house from the pilot? The house is feet from the pilot of the balloon. (Do not round until the final answer. Then round to the nearest tenth as needed.)

Ask by Smith Cole. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The house is approximately 3916.8 feet from the pilot.

Solución

To find the distance from the pilot to the house, we can use trigonometry. Given: - Altitude of the hot-air balloon = 2589 feet - Angle of depression from the pilot to the house = \( 32^{\circ} \) We can use the tangent function to find the distance from the pilot to the house. The tangent of an angle in a right triangle is the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle. Let's denote the distance from the pilot to the house as \( d \). Using the tangent function: \[ \tan(32^{\circ}) = \frac{2589}{d} \] Now, we can solve for \( d \) by rearranging the equation: \[ d = \frac{2589}{\tan(32^{\circ})} \] Let's calculate the value of \( d \) using the tangent function. The distance from the pilot to the house is approximately 3916.756939 feet. Rounding to the nearest tenth, the distance from the pilot to the house is approximately 3916.8 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the distance from the house to the pilot, we can use trigonometry. The angle of depression is the angle between the horizontal line from the balloon and the line of sight to the house. First, we can identify the opposite side (the altitude of the balloon) and the adjacent side (the distance to the house) for the right triangle formed. Using the tangent function, which relates these sides as: \[ \tan(32^\circ) = \frac{\text{opposite}}{\text{adjacent}} = \frac{2589}{d} \] where \(d\) is the distance from the balloon to the house. Re-arranging the formula gives: \[ d = \frac{2589}{\tan(32^\circ)} \] Calculating this, \[ d \approx \frac{2589}{0.62487} \approx 4142.33 \text{ feet} \] Thus, rounded to the nearest tenth, the house is approximately **4142.3 feet** from the pilot of the balloon. In a hot-air balloon, the pilot has a unique perspective. They can float high above the ground and observe everything from a bird's-eye view, which can be thrilling! Did you know that hot-air ballooning has been around since the late 18th century? The first passengers in a balloon were a sheep, a duck, and a rooster, launched by the Montgolfier brothers in France. This math problem can be tackled by understanding basic trigonometric principles. Be cautious with your calculator settings; ensure it's on the correct mode (degrees, not radians) when using functions like tangent! One common mistake is mixing up the opposite and adjacent sides. Always visualize or sketch a right triangle to avoid confusion.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad