Pregunta
upstudy study bank question image url

A consumer owes \( \$ 2,550 \) on a credit card with a \( 21.9 \% \) annual interest rate. Assuming the consumer makes fixed payments and does not charge any more purchases with the card, what is the total monthly payment needed to pay off the card in three years? Show all work and round your answer to the nearest penny.

Ask by Klein Bernard. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total monthly payment needed is approximately \$97.25.

Solución

To determine the total monthly payment needed to pay off the credit card debt in three years, we can use the formula for the monthly payment on an installment loan, which is given by: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] Where: - \( M \) is the monthly payment - \( P \) is the principal amount (the initial amount owed) - \( r \) is the monthly interest rate (annual interest rate divided by 12) - \( n \) is the total number of payments (number of months) ### Step 1: Identify the known values - \( P = 2550 \) - Annual interest rate = \( 21.9\% \) - Monthly interest rate \( r = \frac{21.9\%}{12} = \frac{0.219}{12} \) - Total number of payments \( n = 3 \text{ years} \times 12 \text{ months/year} = 36 \text{ months} \) ### Step 2: Calculate the monthly interest rate \[ r = \frac{0.219}{12} = 0.01825 \] ### Step 3: Substitute the values into the formula Now we can substitute \( P \), \( r \), and \( n \) into the formula to find \( M \): \[ M = 2550 \frac{0.01825(1 + 0.01825)^{36}}{(1 + 0.01825)^{36} - 1} \] ### Step 4: Calculate \( (1 + r)^n \) First, we need to calculate \( (1 + r)^{36} \): \[ (1 + 0.01825)^{36} \] ### Step 5: Calculate the monthly payment \( M \) Now we can calculate \( M \) using the values we have. Let's perform the calculations step by step. I'll calculate \( (1 + r)^{36} \) and then use it to find \( M \). Calculate the value by following steps: - step0: Calculate: \(\left(1+0.01825\right)^{36}\) - step1: Add the numbers: \(1.01825^{36}\) - step2: Convert the expressions: \(\left(\frac{4073}{4000}\right)^{36}\) - step3: Use the properties of exponents: \(\frac{4073^{36}}{4000^{36}}\) Calculate or simplify the expression \( 2550 * (0.01825 * 1.917605) / (1.917605 - 1) \). Calculate the value by following steps: - step0: Calculate: \(\frac{2550\left(0.01825\times 1.917605\right)}{\left(1.917605-1\right)}\) - step1: Remove the parentheses: \(\frac{2550\times 0.01825\times 1.917605}{1.917605-1}\) - step2: Multiply the terms: \(\frac{\frac{1427848683}{16000000}}{1.917605-1}\) - step3: Subtract the numbers: \(\frac{\frac{1427848683}{16000000}}{0.917605}\) - step4: Convert the expressions: \(\frac{\frac{1427848683}{16000000}}{\frac{183521}{200000}}\) - step5: Multiply by the reciprocal: \(\frac{1427848683}{16000000}\times \frac{200000}{183521}\) - step6: Reduce the numbers: \(\frac{1427848683}{80}\times \frac{1}{183521}\) - step7: Multiply the fractions: \(\frac{1427848683}{80\times 183521}\) - step8: Multiply: \(\frac{1427848683}{14681680}\) ### Step 6: Calculate the monthly payment \( M \) From the calculations, we found that: \[ (1 + r)^{36} \approx 1.917605 \] Now substituting this value into the monthly payment formula: \[ M = 2550 \frac{0.01825 \times 1.917605}{1.917605 - 1} \] Calculating the numerator: \[ 0.01825 \times 1.917605 \approx 0.035036 \] Calculating the denominator: \[ 1.917605 - 1 \approx 0.917605 \] Now substituting these values back into the formula for \( M \): \[ M = 2550 \frac{0.035036}{0.917605} \] Calculating the fraction: \[ \frac{0.035036}{0.917605} \approx 0.038157 \] Finally, calculating \( M \): \[ M \approx 2550 \times 0.038157 \approx 97.253767 \] ### Step 7: Round to the nearest penny Rounding \( 97.253767 \) to the nearest penny gives: \[ M \approx 97.25 \] ### Conclusion The total monthly payment needed to pay off the credit card in three years is approximately **$97.25**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the total monthly payment needed to pay off the credit card debt of \( \$2,550 \) with an annual interest rate of \( 21.9\% \) over three years, we will use the formula for the monthly payment on an installment loan, which is given by: \[ PMT = \frac{P \cdot r(1+r)^n}{(1+r)^n - 1} \] Where: - \( PMT \) is the monthly payment, - \( P \) is the principal (the amount owed), - \( r \) is the monthly interest rate (annual rate divided by 12), - \( n \) is the total number of payments (months). 1. Convert the annual interest rate to a monthly interest rate: \[ \text{Monthly Interest Rate} (r) = \frac{21.9\%}{12} = \frac{0.219}{12} \approx 0.01825 \] 2. Determine the number of months for 3 years: \[ n = 3 \times 12 = 36 \text{ months} \] 3. Plug in the values into the formula: \[ PMT = \frac{2550 \cdot 0.01825(1 + 0.01825)^{36}}{(1 + 0.01825)^{36} - 1} \] Calculating \( (1 + 0.01825)^{36} \): \[ (1 + 0.01825)^{36} \approx 1.82531 \] Now substitute this value back into the PMT formula: \[ PMT = \frac{2550 \cdot 0.01825 \cdot 1.82531}{1.82531 - 1} \] Calculating the numerator: \[ 2550 \cdot 0.01825 \cdot 1.82531 \approx 84.445 \] Now calculate the denominator: \[ 1.82531 - 1 \approx 0.82531 \] Finally, compute the monthly payment: \[ PMT \approx \frac{84.445}{0.82531} \approx 102.64 \] The total monthly payment needed to pay off the card in three years is approximately \( \boxed{102.64} \).

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad