Pregunta
upstudy study bank question image url

Find the range of the quadratic function and the maximum or minimum value of the function. Identify the intervals over which the function is increasing or decreasing. \( y=-2 x^{2}+4 x+3 \)

Ask by Wyatt Mcdonald. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The quadratic function \( y = -2x^{2} + 4x + 3 \) has a maximum value of 5 at \( x = 1 \). Its range is all real numbers less than or equal to 5, or \( (-\infty, 5] \). The function increases from \( -\infty \) to \( x = 1 \) and decreases from \( x = 1 \) to \( \infty \).

Solución

We are given the quadratic function:   y = -2x² + 4x + 3 Step 1. Find the vertex. For a quadratic function in the form y = ax² + bx + c, the x-coordinate of the vertex is given by:   x = -b/(2a). Here, a = -2 and b = 4, so:   x = -4 / (2 × -2) = -4 / -4 = 1. Now, substitute x = 1 into the function to find the y-coordinate:   y = -2(1)² + 4(1) + 3 = -2 + 4 + 3 = 5. So, the vertex is at (1, 5). Since a = -2 is negative, the parabola opens downward, meaning the vertex is a maximum point. Step 2. Determine the range. Because the vertex is the maximum point, the function's maximum value is 5 and y can take any value less than or equal to 5. Thus, the range is:   (−∞, 5]. Step 3. Identify intervals of increase and decrease. For a downward-opening parabola, the function increases as it approaches the vertex from the left and decreases after the vertex. More specifically: - The function is increasing on the interval (−∞, 1] because as x moves toward 1 from the left, y increases. - The function is decreasing on the interval [1, ∞) because as x moves away from 1 toward the right, y decreases. Summary: • Maximum value: 5 at x = 1. • Range: (−∞, 5]. • Increasing on: (−∞, 1]. • Decreasing on: [1, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the range of the quadratic function \( y = -2x^2 + 4x + 3 \), we start by determining the vertex since the coefficient of \( x^2 \) is negative, indicating the parabola opens downward. The x-coordinate of the vertex can be calculated using the formula \( x = -\frac{b}{2a} \), where \( a = -2 \) and \( b = 4 \). Substituting, we have \( x = -\frac{4}{2 \times -2} = 1 \). Next, we find the maximum value of \( y \) by substituting \( x = 1 \) into the function: \[ y(1) = -2(1)^2 + 4(1) + 3 = -2 + 4 + 3 = 5. \] Thus, the maximum value of the function is 5, occurring at \( x = 1 \). Since the parabola opens downward, the range is \( (-\infty, 5] \). To determine where the function is increasing or decreasing, we look at the derivative \( y' = -4x + 4 \) and set it to zero: \[ -4x + 4 = 0 \implies x = 1. \] The function is increasing on the interval \( (-\infty, 1) \) and decreasing on \( (1, \infty) \). Therefore, the range is \( (-\infty, 5] \), the maximum value is 5, increasing on \( (-\infty, 1) \), and decreasing on \( (1, \infty) \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad