Pregunta
upstudy study bank question image url

SECTION B Question 1 Suppose the functions \( f, g, h, r \) and \( \ell \) are defined as follows: \[ \begin{array}{l} f(x)=\frac{1}{3} \log _{3} \frac{1}{4}+\log _{3} x \\ g(x)=\sqrt{(x-3)^{2}} \\ h(x)=5 x-2 x^{2} \\ r(x)=2^{1 x+1}-2^{x-2} \\ \ell(x)=\frac{1}{\sqrt{x}} \end{array} \] 1.1 Write down \( D_{f} \), the domain of \( f \) and then solve the equation \( f(x)=-\log _{\frac{1}{1}} \sqrt[3]{x} \). 1.2 Write down \( D_{p} \) and then solve the equation \( g(x)=\frac{x}{2} \). 1.3 Write down \( D_{h} \) and then solve the inequality \( 2 \geq h(x) \). 1.4 Write down \( D_{r} \) and then solve the equation \( r(x)=0 \). 1.5 Write down \( D_{\text {re }} \) without first calculating \( (r \cdot \ell)(x) \). 1.6 Write down \( D_{\frac{1}{n}} \) without first calculating \( \frac{1}{9}(x) \). [30]

Ask by Parsons Santiago. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**1.1 Domain of \( f \):** \( D_f = (0, \infty) \) **Solution to \( f(x) = -\log_{\frac{1}{1}} \sqrt[3]{x} \):** \( x = \sqrt{2} \) **1.2 Domain of \( g \):** \( D_g = (-\infty, \infty) \) **Solutions to \( g(x) = \frac{x}{2} \):** \( x = 6 \) and \( x = 2 \) **1.3 Domain of \( h \):** \( D_h = (-\infty, \infty) \) **Solution to \( 2 \geq h(x) \):** \( x \in (-\infty, \frac{1}{2}] \cup [2, \infty) \) **1.4 Domain of \( r \):** \( D_r = (-\infty, \infty) \) **Solution to \( r(x) = 0 \):** \( x = 1 \) **1.5 Domain of \( \ell \):** \( D_{\ell} = (0, \infty) \) **1.6 Domain of \( \frac{1}{n} \):** \( D_{\frac{1}{n}} = (-\infty, \infty) \)

Solución

Let's solve each part of the question step by step. ### 1.1 Domain of \( f \) and solving \( f(x) = -\log_{\frac{1}{1}} \sqrt[3]{x} \) **Domain of \( f \):** The function \( f(x) = \frac{1}{3} \log_{3} \frac{1}{4} + \log_{3} x \) is defined when \( x > 0 \) because the logarithm is only defined for positive values. Thus, the domain \( D_f \) is: \[ D_f = (0, \infty) \] **Solving the equation:** We need to solve: \[ f(x) = -\log_{\frac{1}{1}} \sqrt[3]{x} \] Since \( \log_{\frac{1}{1}} \) is undefined, we will assume it was meant to be \( -\log_{3} \sqrt[3]{x} \). So we rewrite the equation: \[ \frac{1}{3} \log_{3} \frac{1}{4} + \log_{3} x = -\log_{3} \sqrt[3]{x} \] Using the property of logarithms, we can express \( -\log_{3} \sqrt[3]{x} \) as: \[ -\log_{3} x^{1/3} = -\frac{1}{3} \log_{3} x \] Thus, the equation becomes: \[ \frac{1}{3} \log_{3} \frac{1}{4} + \log_{3} x = -\frac{1}{3} \log_{3} x \] Combining the logarithmic terms: \[ \frac{1}{3} \log_{3} \frac{1}{4} + \frac{4}{3} \log_{3} x = 0 \] Multiplying through by 3: \[ \log_{3} \frac{1}{4} + 4 \log_{3} x = 0 \] This simplifies to: \[ 4 \log_{3} x = -\log_{3} \frac{1}{4} \] Using the property of logarithms: \[ \log_{3} x^4 = \log_{3} 4 \] Thus: \[ x^4 = 4 \implies x = \sqrt[4]{4} = 2^{1/2} = \sqrt{2} \] ### 1.2 Domain of \( g \) and solving \( g(x) = \frac{x}{2} \) **Domain of \( g \):** The function \( g(x) = \sqrt{(x-3)^{2}} \) is defined for all real numbers since the square root is defined for all real values. Thus, the domain \( D_g \) is: \[ D_g = (-\infty, \infty) \] **Solving the equation:** We need to solve: \[ g(x) = \frac{x}{2} \] This simplifies to: \[ |x - 3| = \frac{x}{2} \] This gives us two cases to consider: **Case 1:** \( x - 3 = \frac{x}{2} \) \[ 2(x - 3) = x \implies 2x - 6 = x \implies x = 6 \] **Case 2:** \( x - 3 = -\frac{x}{2} \) \[ 2(x - 3) = -x \implies 2x - 6 = -x \implies 3x = 6 \implies x = 2 \] Thus, the solutions are \( x = 6 \) and \( x = 2 \). ### 1.3 Domain of \( h \) and solving \( 2 \geq h(x) \) **Domain of \( h \):** The function \( h(x) = 5x - 2x^2 \) is a polynomial and is defined for all real numbers. Thus, the domain \( D_h \) is: \[ D_h = (-\infty, \infty) \] **Solving the inequality:** We need to solve: \[ 2 \geq 5x - 2x^2 \] Rearranging gives: \[ 2x^2 - 5x + 2 \geq 0 \] We can find the roots using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} = \frac{5 \pm \sqrt{25 - 16}}{4} = \frac{5 \pm 3}{4} \] This gives us the roots: \[ x = 2 \quad \text{and} \quad x = \frac{1}{2} \] Now we test intervals around the roots \( \frac{1}{2} \) and \( 2 \): - For \( x < \frac{1}{2} \), choose \( x = 0 \): \( 2(0)^2 - 5(0) + 2 = 2 \geq 0 \) (True) - For \( \frac{1}{2} < x < 2 \), choose \( x = 1 \): \( 2(1)^2 - 5(1) + 2 = -1 \geq 0 \) (False) - For \( x > 2 \), choose \( x = 3 \): \( 2(3)^2 - 5(3) + 2 = 2 \geq 0 \) (True) Thus, the solution to the inequality is: \[ x \in (-\infty, \frac{1}{2}] \cup [2, \infty) \] ### 1.4 Domain of \( r \) and solving \( r(x) = 0 \) **Domain of \( r \):** The function \( r(x) = 2^{1x+1} - 2^{x-2} \) is defined for all real numbers since it is an exponential function. Thus, the domain \( D_r \) is: \[ D_r = (-\infty, \infty) \] **Solving the equation:** We need to solve: \[ r(x) = 0 \implies 2^{1x+1} - 2^{x-2} = 0 \] This can be rewritten as: \[ 2^{x+1} = 2^{x-2} \] Since the bases are the same

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s tackle this question step-by-step! **1.1** The function \( f(x) \) involves a logarithm, so we need to ensure that the argument of the logarithm is positive. The domain of \( f \) is \( D_{f} = \{ x \in \mathbb{R} \mid x > 0 \} \). Solving \( f(x) = -\log_{\frac{1}{1}} \sqrt[3]{x} \) simplifies to finding \( x \). **1.2** The function \( g(x) = \sqrt{(x-3)^{2}} \) is defined for all real numbers, so its domain is \( D_{g} = \mathbb{R} \). To solve \( g(x) = \frac{x}{2} \): \[ |x - 3| = \frac{x}{2} \] which leads to two cases: \( x - 3 = \frac{x}{2} \) and \( x - 3 = -\frac{x}{2} \). **1.3** The domain of \( h(x) = 5x - 2x^{2} \) is also all real numbers, so \( D_{h} = \mathbb{R} \). Setting up \( 2 \geq h(x) \) leads to the quadratic inequality \( 0 \leq 2x^{2} - 5x + 2 \). **1.4** The domain \( D_{r} \) includes all \( x \) where \( 2^{1 x+1} - 2^{x-2} = 0 \). Simplifying gives: \[ 2^{x+1} = 2^{x-2} \Rightarrow x+1 = x-2 \] which reveals potential solutions. **1.5** The function \( \ell(x) = \frac{1}{\sqrt{x}} \) requires \( x > 0 \). Therefore, the domain of \( \ell \) is \( D_{\ell} = (0, \infty) \). **1.6** For the function \( \frac{1}{9}(x) \) the expression is not well-defined in the initial format. However, if proceeding as a simple division, \( D_{\frac{1}{n}} \) would typically be \( \mathbb{R} \) excluding zero. Each part of this problem involves analyzing functions, recognizing domains, and solving for values or inequalities with careful algebra. It’s important to recognize both the constraints given by the mathematical expressions themselves and the logical flow when solving each equation or inequality. Have fun with those calculations!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad