Pregunta
upstudy study bank question image url

Given the following function, (a) find the vertex; (b) determine whether there is a maximum or a minimum value, and find the value; (c) find the range; and (d) find the intervals on which the function is increasing and the intervals on which the function is decreasing. \( f(x)=-8 x^{2}-40 x+3 \) (a) The vertex is (Type an ordered pair, using integers or fractions.)

Ask by Beck Delgado. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The vertex is (–5/2, 53).

Solución

We are given the quadratic function   f(x) = –8x² – 40x + 3. (a) To find the vertex, recall that for a quadratic in the form f(x) = ax² + bx + c the x-coordinate of the vertex is given by   x = –b/(2a). Here, a = –8 and b = –40. Thus,   x = –(–40) / (2 · –8) = 40 / (–16) = –5/2. Now, substitute x = –5/2 back into the function to find the y-coordinate:   f(–5/2) = –8(–5/2)² – 40(–5/2) + 3       = –8(25/4) + 100 + 3       = –50 + 100 + 3       = 53. Therefore, the vertex is   (–5/2, 53).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the vertex of the function \( f(x) = -8x^2 - 40x + 3 \), we can use the formula for the vertex of a quadratic function, which is given by \( x = -\frac{b}{2a} \). Here, \( a = -8 \) and \( b = -40 \). Calculating the x-coordinate of the vertex: \[ x = -\frac{-40}{2 \cdot -8} = -\frac{40}{-16} = 2.5 \] Plugging \( x = -2.5 \) back into the function to find the y-coordinate: \[ f(-2.5) = -8(-2.5)^2 - 40(-2.5) + 3 = -8(6.25) + 100 + 3 = -50 + 100 + 3 = 53 \] Thus, the vertex is \( (-2.5, 53) \). (b) Since the coefficient of \( x^2 \) is negative \((-8)\), this indicates that the function opens downwards, meaning there is a maximum value at the vertex. The maximum value is \( 53 \). (c) The range of the function is from the maximum value down to negative infinity, written as \( (-\infty, 53] \). (d) To find the intervals of increase and decrease, we look at the vertex. Since the function is a downward-opening parabola, it increases on the interval \( (-\infty, -2.5) \) and decreases on the interval \( (-2.5, \infty) \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad