Pregunta
upstudy study bank question image url

6.1.2 Exam: Semester 2 Exam Question 7 of 40 How does the graph of \( f(x)=-3^{2 x}-4 \) differ from the graph of \( g(x)=-3^{2 x} \) ? A. The graph of \( f(x) \) is shifted four units down from the graph of \( g(x) \). B. The graph of \( f(x) \) is shifted four units to the left of the graph of \( g(x) \). The graph of \( f(x) \) is shifted four units up from the graph of \( g(x) \) D. The graph of \( f(x) \) is shifted four units to the right of the graph of \( g(x) \).

Ask by Knight Long. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The graph of \( f(x) = -3^{2x} - 4 \) is shifted four units down from the graph of \( g(x) = -3^{2x} \).

Solución

To determine how the graph of \( f(x) = -3^{2x} - 4 \) differs from the graph of \( g(x) = -3^{2x} \), let's analyze the transformations involved. ### Understanding the Functions 1. **Original Function (\( g(x) \)):** \[ g(x) = -3^{2x} \] - This is an exponential function with a base of 3 raised to the power of \( 2x \), and the entire expression is negated. 2. **Transformed Function (\( f(x) \)):** \[ f(x) = -3^{2x} - 4 \] - This function is the same as \( g(x) \) but with an additional \(-4\) at the end. ### Identifying the Transformation The difference between \( f(x) \) and \( g(x) \) is the \(-4\) term in \( f(x) \). This represents a **vertical shift** of the graph. - **Vertical Shift:** Adding or subtracting a constant to the function \( g(x) \) shifts the graph **up or down**. - **\( g(x) + 4 \):** Shifts the graph **4 units up**. - **\( g(x) - 4 \):** Shifts the graph **4 units down**. Since \( f(x) = g(x) - 4 \), the graph of \( f(x) \) is shifted **4 units down** from the graph of \( g(x) \). ### Conclusion **Answer A** correctly describes this transformation: **A. The graph of \( f(x) \) is shifted four units down from the graph of \( g(x) \).** Answer: A

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The graph of \( f(x) = -3^{2x} - 4 \) is like a moody cousin of \( g(x) = -3^{2x} \). The key difference is that \( f(x) \) takes every output from \( g(x) \) and shifts it four units down. So, if \( g(x) \) has a point at \( y = -2 \), \( f(x) \)'s corresponding point will be at \( y = -6 \). This downward shift can really change the overall look of the graph, making it appear lower on the coordinate plane. If we're looking for common mistakes when analyzing these kinds of transformations, one major pitfall is misinterpreting the negative sign and the constants. Many might think that the '-4' results in a left or right shift, but in reality, it only affects the vertical position. Make sure to remember that horizontal shifts are influenced by terms added or subtracted from \( x \) in the exponent. Keeping track of these shifts can save you from going off course in graphing functions!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad