Responder
Here are the limits evaluated:
- (g) \( 0 \)
- (h) Undefined
- (i) \( \frac{5}{2} \)
- (j) \( -\frac{6}{5} \)
- (k) \( 1 \)
- (1) \( -\frac{1}{4} \)
- (m) \( \sqrt{3} \)
- (n) \( 3 \)
- (o) \( 3 \)
Solución
Evaluate the limit by following steps:
- step0: Evaluate the limit:
\(\lim _{x\rightarrow +\infty}\left(\frac{3x+\left|1-3x\right|}{1-5x}\right)\)
- step1: Rewrite the expression:
\(\lim _{x\rightarrow +\infty}\left(\frac{3x-1+3x}{1-5x}\right)\)
- step2: Simplify:
\(\lim _{x\rightarrow +\infty}\left(\frac{6x-1}{1-5x}\right)\)
- step3: Rewrite the expression:
\(\lim _{x\rightarrow +\infty}\left(\frac{x\left(6-\frac{1}{x}\right)}{x\left(\frac{1}{x}-5\right)}\right)\)
- step4: Reduce the fraction:
\(\lim _{x\rightarrow +\infty}\left(\frac{6-\frac{1}{x}}{\frac{1}{x}-5}\right)\)
- step5: Rewrite the expression:
\(\frac{\lim _{x\rightarrow +\infty}\left(6-\frac{1}{x}\right)}{\lim _{x\rightarrow +\infty}\left(\frac{1}{x}-5\right)}\)
- step6: Calculate:
\(\frac{6}{\lim _{x\rightarrow +\infty}\left(\frac{1}{x}-5\right)}\)
- step7: Calculate:
\(\frac{6}{-5}\)
- step8: Calculate:
\(-\frac{6}{5}\)
Calculate the limit \( \lim_{x \rightarrow \infty} \frac{3 x}{\sqrt{4 x^{2}+x}-2 x} \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow +\infty}\left(\frac{3x}{\sqrt{4x^{2}+x}-2x}\right)\)
- step1: Rewrite the expression:
\(\frac{\lim _{x\rightarrow +\infty}\left(3x\right)}{\lim _{x\rightarrow +\infty}\left(\sqrt{4x^{2}+x}-2x\right)}\)
- step2: Calculate:
\(\frac{+\infty}{\lim _{x\rightarrow +\infty}\left(\sqrt{4x^{2}+x}-2x\right)}\)
- step3: Calculate:
\(\frac{+\infty}{\frac{1}{4}}\)
- step4: Calculate:
\(+\infty\)
Calculate the limit \( \lim_{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}} \).
Evaluate the limit by following steps:
- step0: Evaluate using L'Hopital's rule:
\(\lim _{x\rightarrow +\infty}\left(\frac{\ln{\left(x\right)}}{\sqrt{x}}\right)\)
- step1: Use the L'Hopital's rule:
\(\lim _{x\rightarrow +\infty}\left(\frac{\frac{d}{dx}\left(\ln{\left(x\right)}\right)}{\frac{d}{dx}\left(\sqrt{x}\right)}\right)\)
- step2: Find the derivative:
\(\lim _{x\rightarrow +\infty}\left(\frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}}\right)\)
- step3: Simplify the expression:
\(\lim _{x\rightarrow +\infty}\left(\frac{2}{\sqrt{x}}\right)\)
- step4: Rewrite the expression:
\(\frac{2}{\lim _{x\rightarrow +\infty}\left(\sqrt{x}\right)}\)
- step5: Calculate:
\(\frac{2}{+\infty}\)
- step6: Divide the terms:
\(0\)
Calculate the limit \( \lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+3}-\sqrt{x-2}) \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow +\infty}\left(\sqrt{x}\times \left(\sqrt{x+3}-\sqrt{x-2}\right)\right)\)
- step1: Calculate the product:
\(\lim _{x\rightarrow +\infty}\left(\sqrt{x^{2}+3x}-\sqrt{x^{2}-2x}\right)\)
- step2: Multiply by the Conjugate:
\(\lim _{x\rightarrow +\infty}\left(\frac{5x}{\sqrt{x^{2}+3x}+\sqrt{x^{2}-2x}}\right)\)
- step3: Rearrange the terms:
\(\lim _{x\rightarrow +\infty}\left(\frac{5x}{\left(\sqrt{1+\frac{3}{x}}+\sqrt{1-\frac{2}{x}}\right)x}\right)\)
- step4: Reduce the fraction:
\(\lim _{x\rightarrow +\infty}\left(\frac{5}{\sqrt{1+\frac{3}{x}}+\sqrt{1-\frac{2}{x}}}\right)\)
- step5: Rewrite the expression:
\(\frac{\lim _{x\rightarrow +\infty}\left(5\right)}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\frac{3}{x}}+\sqrt{1-\frac{2}{x}}\right)}\)
- step6: Evaluate:
\(\frac{5}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\frac{3}{x}}+\sqrt{1-\frac{2}{x}}\right)}\)
- step7: Evaluate:
\(\frac{5}{2}\)
Calculate the limit \( \lim_{x \rightarrow -\infty} \frac{\sqrt{x^{2}+4 x}}{4 x+1} \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow -\infty}\left(\frac{\sqrt{x^{2}+4x}}{4x+1}\right)\)
- step1: Rewrite the expression:
\(\lim _{x\rightarrow -\infty}\left(\frac{-\sqrt{1+\frac{4}{x}}\times x}{\left(4+\frac{1}{x}\right)x}\right)\)
- step2: Reduce the fraction:
\(\lim _{x\rightarrow -\infty}\left(\frac{-\sqrt{1+\frac{4}{x}}}{4+\frac{1}{x}}\right)\)
- step3: Rewrite the expression:
\(\frac{\lim _{x\rightarrow -\infty}\left(-\sqrt{1+\frac{4}{x}}\right)}{\lim _{x\rightarrow -\infty}\left(4+\frac{1}{x}\right)}\)
- step4: Calculate:
\(\frac{-1}{\lim _{x\rightarrow -\infty}\left(4+\frac{1}{x}\right)}\)
- step5: Calculate:
\(\frac{-1}{4}\)
- step6: Rewrite the fraction:
\(-\frac{1}{4}\)
Calculate the limit \( \lim_{x \rightarrow \infty} \frac{\sqrt{3 x^{8}+7 x^{4}}+10}{x^{4}-2 x^{2}+1} \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow +\infty}\left(\frac{\sqrt{3x^{8}+7x^{4}}+10}{x^{4}-2x^{2}+1}\right)\)
- step1: Simplify the root:
\(\lim _{x\rightarrow +\infty}\left(\frac{x^{2}\sqrt{3x^{4}+7}+10}{x^{4}-2x^{2}+1}\right)\)
- step2: Rewrite the expression:
\(\lim _{x\rightarrow +\infty}\left(\frac{\left(\sqrt{3+\frac{7}{x^{4}}}+\frac{10}{x^{4}}\right)x^{4}}{\left(1-\frac{2}{x^{2}}+\frac{1}{x^{4}}\right)x^{4}}\right)\)
- step3: Reduce the fraction:
\(\lim _{x\rightarrow +\infty}\left(\frac{\sqrt{3+\frac{7}{x^{4}}}+\frac{10}{x^{4}}}{1-\frac{2}{x^{2}}+\frac{1}{x^{4}}}\right)\)
- step4: Rewrite the expression:
\(\frac{\lim _{x\rightarrow +\infty}\left(\sqrt{3+\frac{7}{x^{4}}}+\frac{10}{x^{4}}\right)}{\lim _{x\rightarrow +\infty}\left(1-\frac{2}{x^{2}}+\frac{1}{x^{4}}\right)}\)
- step5: Calculate:
\(\frac{\sqrt{3}}{\lim _{x\rightarrow +\infty}\left(1-\frac{2}{x^{2}}+\frac{1}{x^{4}}\right)}\)
- step6: Calculate:
\(\frac{\sqrt{3}}{1}\)
- step7: Divide the terms:
\(\sqrt{3}\)
Calculate the limit \( \lim_{x \rightarrow \infty}\left[\sqrt{x^{2}+5 x}-\sqrt{x^{2}-x}\right] \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow +\infty}\left(\sqrt{x^{2}+5x}-\sqrt{x^{2}-x}\right)\)
- step1: Multiply by the Conjugate:
\(\lim _{x\rightarrow +\infty}\left(\frac{6x}{\sqrt{x^{2}+5x}+\sqrt{x^{2}-x}}\right)\)
- step2: Rearrange the terms:
\(\lim _{x\rightarrow +\infty}\left(\frac{6x}{\left(\sqrt{1+\frac{5}{x}}+\sqrt{1-\frac{1}{x}}\right)x}\right)\)
- step3: Reduce the fraction:
\(\lim _{x\rightarrow +\infty}\left(\frac{6}{\sqrt{1+\frac{5}{x}}+\sqrt{1-\frac{1}{x}}}\right)\)
- step4: Rewrite the expression:
\(\frac{\lim _{x\rightarrow +\infty}\left(6\right)}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\frac{5}{x}}+\sqrt{1-\frac{1}{x}}\right)}\)
- step5: Evaluate:
\(\frac{6}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\frac{5}{x}}+\sqrt{1-\frac{1}{x}}\right)}\)
- step6: Evaluate:
\(\frac{6}{2}\)
- step7: Reduce the numbers:
\(\frac{3}{1}\)
- step8: Calculate:
\(3\)
Calculate the limit \( \lim_{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}) \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow +\infty}\left(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}\right)\)
- step1: Multiply by the Conjugate:
\(\lim _{x\rightarrow +\infty}\left(\frac{2\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x-\sqrt{x}}}\right)\)
- step2: Rearrange the terms:
\(\lim _{x\rightarrow +\infty}\left(\frac{2x^{\frac{1}{2}}}{\left(\sqrt{1+\sqrt{x^{-1}}}+\sqrt{1-\sqrt{x^{-1}}}\right)x^{\frac{1}{2}}}\right)\)
- step3: Reduce the fraction:
\(\lim _{x\rightarrow +\infty}\left(\frac{2}{\sqrt{1+\sqrt{x^{-1}}}+\sqrt{1-\sqrt{x^{-1}}}}\right)\)
- step4: Rewrite the expression:
\(\frac{\lim _{x\rightarrow +\infty}\left(2\right)}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\sqrt{x^{-1}}}+\sqrt{1-\sqrt{x^{-1}}}\right)}\)
- step5: Evaluate:
\(\frac{2}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\sqrt{x^{-1}}}+\sqrt{1-\sqrt{x^{-1}}}\right)}\)
- step6: Evaluate:
\(\frac{2}{2}\)
- step7: Reduce the numbers:
\(\frac{1}{1}\)
- step8: Calculate:
\(1\)
Let's evaluate each limit step by step:
### (g) \( \lim_{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}} \)
As \( x \) approaches infinity, \( \ln x \) grows much slower than \( \sqrt{x} \). Therefore, the limit is:
\[
\lim_{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}} = 0
\]
### (h) \( \lim_{u \rightarrow \infty} \frac{u}{\sqrt{x^{2}+1}} \)
This limit is not well-defined as it contains \( x \) instead of \( u \). Assuming \( x \) is a constant, the limit cannot be evaluated without further information.
### (i) \( \lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+3}-\sqrt{x-2}) \)
Using the identity \( a - b = \frac{(a^2 - b^2)}{a + b} \):
\[
\sqrt{x+3} - \sqrt{x-2} = \frac{(x+3) - (x-2)}{\sqrt{x+3} + \sqrt{x-2}} = \frac{5}{\sqrt{x+3} + \sqrt{x-2}}
\]
Thus,
\[
\lim_{x \rightarrow \infty} \sqrt{x}(\sqrt{x+3}-\sqrt{x-2}) = \lim_{x \rightarrow \infty} \sqrt{x} \cdot \frac{5}{\sqrt{x+3} + \sqrt{x-2}} = \frac{5}{2}
\]
### (j) \( \lim_{x \rightarrow \infty} \frac{3 x + |1 - 3 x|}{1 - 5 x} \)
For large \( x \), \( |1 - 3x| = 3x - 1 \):
\[
\lim_{x \rightarrow \infty} \frac{3x + (3x - 1)}{1 - 5x} = \lim_{x \rightarrow \infty} \frac{6x - 1}{1 - 5x} = \lim_{x \rightarrow \infty} \frac{6 - \frac{1}{x}}{-5} = -\frac{6}{5}
\]
### (k) \( \lim_{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}) \)
Using the same identity:
\[
\sqrt{x+\sqrt{x}} - \sqrt{x-\sqrt{x}} = \frac{(x+\sqrt{x}) - (x-\sqrt{x})}{\sqrt{x+\sqrt{x}} + \sqrt{x-\sqrt{x}}} = \frac{2\sqrt{x}}{\sqrt{x+\sqrt{x}} + \sqrt{x-\sqrt{x}}}
\]
As \( x \) approaches infinity, this limit evaluates to:
\[
\lim_{x \rightarrow \infty} \frac{2\sqrt{x}}{2\sqrt{x}} = 1
\]
### (1) \( \lim_{x \rightarrow -\infty} \frac{\sqrt{x^{2}+4 x}}{4 x+1} \)
As \( x \) approaches negative infinity:
\[
\lim_{x \rightarrow -\infty} \frac{\sqrt{x^2(1 + \frac{4}{x})}}{4x(1 + \frac{1}{4x})} = \lim_{x \rightarrow -\infty} \frac{|x|\sqrt{1 + \frac{4}{x}}}{4x(1 + \frac{1}{4x})} = \lim_{x \rightarrow -\infty} \frac{-\sqrt{1 + \frac{4}{x}}}{4(1 + \frac{1}{4x})} = -\frac{1}{4}
\]
### (m) \( \lim_{x \rightarrow \infty} \frac{\sqrt{3 x^{8}+7 x^{4}}+10}{x^{4}-2 x^{2}+1} \)
The dominant term in the numerator is \( \sqrt{3}x^4 \) and in the denominator is \( x^4 \):
\[
\lim_{x \rightarrow \infty} \frac{\sqrt{3}x^4 + 10}{x^4 - 2x^2 + 1} = \sqrt{3}
\]
### (n) \( \lim_{x \rightarrow \infty}\left[\sqrt{x^{2}+5 x}-\sqrt{x^{2}-x}\right] \)
Using the identity:
\[
\sqrt{x^2 + 5x} - \sqrt{x^2 - x} = \frac{(x^2 + 5x) - (x^2 - x)}{\sqrt{x^2 + 5x} + \sqrt{x^2 - x}} = \frac{6x}{\sqrt{x^2 + 5x} + \sqrt{x^2 - x}}
\]
As \( x \) approaches infinity, this limit evaluates to:
\[
\lim_{x \rightarrow \infty} \frac{6x}{2x} = 3
\]
### (o) \( \lim_{x \rightarrow \infty} \frac{3 x}{\sqrt{4 x^{2}+x}-2 x} \)
Rationalizing the denominator:
\[
\lim_{x \rightarrow \infty} \frac{3x(\sqrt{4x^2 + x} + 2x)}{(4x^2 + x) - 4x^2} = \lim_{x \rightarrow \infty} \frac{3x(\sqrt{4x^2 + x} + 2x)}{x} = 3
\]
### Summary of Results:
- (g) \( 0 \)
- (h) Undefined
- (i) \( \frac{5}{2} \)
- (j) \( -\frac{6}{5} \)
- (k) \( 1 \)
- (1) \( -\frac{1}{4} \)
- (m) \( \sqrt{3} \)
- (n) \( 3 \)
- (o) \( 3 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución