3. Find the size of the angle \( \theta \) where \( \theta \) is acute. \( \begin{array}{ll}\text { a. } \sin \theta=0.529 & \text { c. } \tan \theta=1.8 \\ \text { b. } \cos \theta=0.493 & \text { d. } \cos \theta=0.5\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the angle \( \theta \) where \( \theta \) is acute, we can use the inverse trigonometric functions for each case. For \( \sin \theta = 0.529 \), using \( \theta = \arcsin(0.529) \), we find \( \theta \approx 31.8^\circ \). For \( \cos \theta = 0.493 \), we get \( \theta = \arccos(0.493) \approx 60.3^\circ \). The tangent case, \( \tan \theta = 1.8 \), yields \( \theta \approx 60.3^\circ \). As for \( \cos \theta = 0.5 \), the angle is \( \theta = 60^\circ \). Therefore, the angles found are approximately \( 31.8^\circ \), \( 60.3^\circ \), and \( 60^\circ \). The smallest acute angle from all the calculations is approximately \( 31.8^\circ \), corresponding to option a, where \( \sin \theta = 0.529 \). Remember to ensure that the angles calculated remain in the range of acute angles (0° to 90°)!
