2. Using the degrees/minutes/seconds button on your calculator, write each of the following in degrees and minutes, give answers to the nearest minute. \( \begin{array}{ll}\text { a. } 17.8^{\circ} & \text { c. } 63.7^{\circ} \\ \text { b. } 48.52^{\circ} & \text { d. } 108.33^{\circ}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To convert decimal degrees into degrees and minutes, start by separating the whole number degree from the decimal part. For each angle, multiply the decimal part by 60 to find the minutes, rounding to the nearest minute. For \(17.8^{\circ}\), the whole number is 17 and \(0.8 \times 60 = 48\) minutes. So, \(17.8^{\circ} = 17^{\circ} 48'\). For \(48.52^{\circ}\), it's 48 degrees and \(0.52 \times 60 \approx 31.2\), rounding gives 31 minutes. So, \(48.52^{\circ} = 48^{\circ} 31'\). For \(63.7^{\circ}\), we have 63 degrees and \(0.7 \times 60 = 42\) minutes, thus \(63.7^{\circ} = 63^{\circ} 42'\). Finally, for \(108.33^{\circ}\), separating gives 108 degrees and \(0.33 \times 60 \approx 19.8\), rounding to 20 minutes. Therefore \(108.33^{\circ} = 108^{\circ} 20'\). Here's a quick summary: - \(17.8^{\circ} = 17^{\circ} 48'\) - \(48.52^{\circ} = 48^{\circ} 31'\) - \(63.7^{\circ} = 63^{\circ} 42'\) - \(108.33^{\circ} = 108^{\circ} 20'\)
